Prof. Dr. Peter G. Malischewsky (Seismology​)

Prof. Dr. Peter G. Malischewsky

Image: IGW

Prof. Dr. Peter G. Malischewsky

Friedrich-Schiller-University Jena
Institute for Geosciences
Burgweg 11
D-07749 Jena, Germany

 ++49-(0)3641 - 9-48671

Contact:  E-Mail

Research focus and publications

  1. Theory of seismic waves, surface waves, and waveguides
  2. Seismology
  3. Seismic and ultrasonic tomography
  4. H/V-method and applications
  5. Ultrasonic sound and NDT (Non-Destructive Testing)
  6. Auxetic materials
  7. Seismometry
  8. Theory of fractals
  9. Miscellaneous

Curriculum vitae

Curriculum vitae (see also "Biographical Sketch of Peter G. Malischewsky" in "Handbook of Earthquake & Engineering Seismology", Part B, Academic Press, 2003)

  • Birth as son of Baltic parents: May 09, 1945
  • 1963-1968: Study of physics at the FSU Jena
  • 1968: Diploma in Physics
  • 1974: Dr. rer. nat. in geophysics at the AdW
  • 1985: Working stay in Moscow, Tbilisi and Leningrad
  • 1989: Dr. sci. nat. in geophysics at the AdW
  • 1994: Dr. habil. in Theoretical Physics, FSU Jena
  • 1999-2000: Visiting Professor at the Institute IIMAS at UNAM, Mexico
  • 2000: adjunct professor in geophysics, FSU Jena
  • 2004: Visiting Professor at the Instituto de Geofisica at UNAM, Mexico

Honors

  • Johann-Gottfried-Herder-Medal in gold
  • Institute Award of the Central Institute for Physics of the Earth
  • Entry in "Who's Who in the World" since 2007, p. 1607, Marquis Who'sWho, USA
  • Certificate of "Excellence in Reviewing" from the journal "Wave Motion", 2013

Memberships

  • UGM (Mexican Geophysical Union)
  • Member of the Editorial Board of the International Geophysics Journal

 

Research focus and publications

1. Theory of seismic waves, surface waves, and waveguides

  • P. Malischewsky: Orthonormalization of plane surface and body waves (in German), Gerl. Beitr. Geophys. 79 (1970), 468-474.
  • P. Malischewsky: Consideration of certain singularities in Haskell's matrix method, Gerl. Beitr. Geophys. 80 (1971), 457-462.
  • P. Malischewsky: Propagation of seismic surface waves in media with vertical discontinuities (in German), Veröff. Zentlinst. Phys. Erde, No. 24, AdW der DDR, Potsdam 1973.
  • P. Malischewsky: The influence of curved discontinuities on the propagation of seismic surface waves, Gerl. Beitr. Geophys. 83 (1974), 355-362.
  • P. Malischewsky: Surface waves in media having lateral inhomogeneities, Pure Appl. Geophys. 114 (1976), 833-843.
  • P. Malischewsky: An improvement of Alsop's method for the determination of reflection and transmission coefficients of surface waves (in German), Pure Appl. Geophys. 117 (1979), 1045-1049.
  • P. Malischewsky: A semianalytical method for the calculation of leaking Love-wave modes, Wave Motion 7 (1985), 253-262.
  • P. Malischewsky: Surface Waves and Discontinuities, Elsevier, Amsterdam 1987.
  • P. Malischewsky: Surface Waves and Discontinuities, Akademie-Verlag, Berlin 1987.
  • P. Malischewsky: Surface Waves and Lateral Inhomogeneities, Veröffentl. Zentlnst. Phys. Erde, No. 104, AdW der DDR, Potsdam 1989.
  • P. Malischewsky: Comment to "A new formula for the velocity of Rayleigh waves" by D. Nkemzi, Wave Motion 31 (2000), 93-96.
  • P. Malischewsky; Th. Meier: Mathematics of surface waves and their use for detecting and imaging lateral heterogeneities in the Earth's crust and upper mantle, Memorias de Geoinfo 2000, 21-24 March, 2000, La Habana, Cuba, 1-12.
  • P. Malischewsky: Some special solutions of Rayleigh's equation and the reflections of body waves at a free surface, Geofisica Internacional 39 (2000), 155-160.
  • P. Malischewsky: Surface Waves in Germany, Second Part of the Century, Chapter 79.24 Germany, p. 4, International Handbook of Earthquake Engineering Seismology, Part B, by W. H. K. Lee (Ed.), Academic Press, Amsterdam 2003.
  • Besserer; P. G. Malischewsky: Mode series expansions at vertical boundaries in elastic waveguides, Wave Motion 39 (2004), 41-59.
  • P. Malischewsky; F. Scherbaum; C. Lomnitz; T. T. Tran; F. Wuttke; G. Shamir: The domain of existence of prograde Rayleigh-wave particle motion for simple models, Wave Motion 45 (2008), 556-564.
  • P. Malischewsky: Connections between seismology, waveguide physics and quantum mechanics, Proc. of Days on Diffraction 2009, St. Petersburg, Russia, 144-150.
  • P. Malischewsky: Seismic waves and surface waves: past and present, Geofisica Internacional 50 (2011), 485-493.
  • V. Pham; P. G. Malischewsky; T. H. G. Pham: Formulas for the speed and slowness of Stoneley waves in bonded isotropic elastic half-spaces with the same bulk wave velocities, Int. J. of Eng. Sci. 60 (2012), 53-58.
  • P. Malischewsky: Surface Waves, 2018, In: Altenbach, H., Öchsner, A. (eds.), Encyclopedia of Continuum Mechanics, Springer, Berlin, Heidelberg, pp. 1-9.

 

2. Seismology

  • P. Malischewsky: Application of the improved version of Alsop's method to the passage of Rayleigh waves through a vertical discontinuity (in Russian), Izv. Akad. Nauk SSSR, Fiz. Zemli (1980) 11, 87-89.
  • H. Neunhöfer; P. G. Malischewsky: Anomalous polarization of Love waves indicating anisotropy along paths in EurasiaExternal link, Gerl. Beitr. Geophys. 90 (1981), 179-186.
  • E. N. Its; P. Malischewsky: Propagation of Rayleigh waves through a loosely-bonded vertical interface of elastic media (in Russian), Izv. Akad. Nauk SSSR, Fiz. Zemli (1987) 6, 66-72.
  • E. N. Its; P. Malischewsky: Reflection and transmission of Love waves at vertical unwelded interface (in Russian), Ger. Beitr. Geophys. 97 (1988), 144-151.
  • Neunhöfer; P. G. Malischewsky: Observation of anisotropy of Love waves crossing the Eurasian continent, Phys. Earth Planet. Int. 51 (1988), 157-158.
  • P. Malischewsky: Interpretation of surface wave spectra in laterally inhomogeneous mediaExternal link, Geophys. J. Int. 99 (1989), 305-306.
  • P. Malischewsky Auning; C. Lomnitz; F. Wuttke; R. Saragoni: Prograde Rayleigh-wave motion in the valley of Mexico, Geofisica Internacional 45 (2006), 149-162.
  • Tran Thanh Tuan; P. G. Malischewsky; M. Ohrnberger: Dispersion of zero-frequency Rayleigh waves in an isotropic model 'Layer over half-space', Geophys. J. Int. 175 (2008), 537-540.
  • K. D. Klinge; M. Korn; S. Funke; Th. Plenefisch; E. Schmedes; J. Wassermann; P. Malischewsky: More than 100 years of instrumental observation of earthquakes in the swarm-quake region Vogtland / NW Bohemia (in German), Z. geol. Wiss. 36 (2008), 405-422.
  • J. Torizin; G. Jentzsch; P. Malischewsky; J. Kley; N. Abakanov; A. Kurskeev: Rating of seismicity and reconstruction of the fault geometries in northern Tien Shan within the project "Seismic hazard Assessment of Almaty", J. of Geodynamics 48 (2009), 269-278.
  • P. Malischewsky: Seismological implications of impedance-like boundary conditions, Proc. of Days on Diffraction 2011, St. Petersburg, Russia, 131-134.
  • P. G. Malischewsky; T. Forbriger; T. C. Lomnitz: Unusual equivocal Rayleigh-dispersion curves for simple models taking into account the special propagation conditions in the valley of Mexico City (CDMX)-Preliminary results, Geofisica Internacional 56 (2017) 1, 7-12.
  • P. Malischewsky; T. Forbriger: May Rayleigh waves propagate with group- and phase-velocities of opposite sign in the valley ov Mexico City?, Geofisica Internacional 59-2 (2020),101-104.
  • T. Forbriger; L. Gao; P. Malischewsky; M. Ohrnberger; Y. Pan: A single Rayleigh mode may exist with multiple values of phase-velocity at one frequency, Geophys. J. Int. 222 (2020) 1, 582-594.

3. Seismic and ultrasonic tomography

  • Th. Meier; P. G. Malischewsky; H. Neunhöfer: Reflection and transmission of surface waves at a vertical discontinuity and imaging of lateral heterogeneity using reflected fundamental Rayleigh waves, Bull. Seism. Soc. Am. 87 (1997), 1648-1661.
  • P. Malischewsky; Th. Meier: The use of GRSN-data for tomography with reflected surface waves, Ten Years of German Regional Seismic network (GRSN), Wiley-VCH, 2002, 125-132.
  • Th. Meier; P. G. Malischewsky. Approximation of surface wave mode conversion at a passive continental margin by a mode-matching technique, Geophys. J. Int. 141 (2000), 12-24.

 

4. H/V-method and applications

  • P. Malischewsky; F. Scherbaum: Love's formula and H/V-ratio (ellipticity) of Rayleigh waves, Wave Motion 40 (2004), 57-67.
  • P. Malischewsky, Y. Zaslavsky; M. Gorstein; V. Pinsky; T. T. Tran; F. Scherbaum; H. Flores Estrella: Some new theoretical considerations about the ellipticity of Rayleigh waves in the light of site-effect studies in Israel and Mexico, Geofisica Internacional 49 (2010), 141-151.
  • Tran Thanh Tuan; F. Scherbaum; P. G. Malischewsky: On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models, Geophys. J. Int. 184 (2011), 793-800.
  • H. Flores, P. Malischewsky; G. Jentzsch: H/V spectral ratio analysis and Rayleigh modelization in Eastern Thuringia, Germany, Geofisica Internacional 52 (2013), 355-364.
  • Tran Thanh Tuan; P. Malischewsky; Doan Thu Huong: Property of the H/V ratio at the osculation point in LFB model (in Vietnamese), VSSM 7-9/11/2013, 1275-1282.
  • P. Malischewsky; V. Karakostas; E. Papadimitriou: Some new findings concerning the theory of H/V-method (in Greek), Physics News 9 (2014), 41-42.
  • E, Lunedei; P. Malischewsky: Chapter 15: A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations, 371-394, In: A. Ansal (Ed.): Perspectives on European Erthquake Engineering and Seismology, Vol. 2, Springer, 2014.
  • Tran Thanh Tuan; Pham Chi Vinh; P. Malischewsky; A. Aoudia: Approximate formula of peak frequency of H/V ratio curve in multilayered model and its use in H/V ratio technique, Pure Appl. Geophys. 173 (2016), 487-498.
  • P. C.Vinh; T. T. Tuan; L. T. Hue; V. T. N. Anh; T. T. T. Dung; N. T. K. Linh; P. Malischewsky: Exact formula for the horizontal-to-vertical displacement ratio for Rayleigh waves in layered orthotropic half-spaces, J. Acoust. Soc. Am. 146 (2019), 1279-1289.

 

5. Ultrasonic sound and NDT (Non-Destructive Testing)

  • P. Malischewsky; F. Wuttke; A. Ziegert: Use of acoustical surface waves for non-destructive testing (in German), Schriftenreihe Werkstoffwissenschaften, Band 17, Verlag Dr. Köster, Berlin 2002, 135-140.
  • P. Malischewsky; J.-D. Schnapp: Surface waves and material testing from seismological view (in German), DGZfP-Jahrestagung Salzburg, 2004, Berichtsband BB89-CD, 1-6.
  • P. Malischewsky Auning: A note on Rayleigh-wave velocities as a function of the material parameters, Geofisica Internacional 43 (2004), 507-509.
  • P. Malischewsky; M. Wolf; F. Wuttke; A. Ziegert: Non-destructive testing with Rayleigh waves and new formulas for Rayleigh waves (in German), 65. Jahrestagung der DGG, Graz 2005, UI03, 279-280.
  • P. Malischewsky: Comparison of approximated solutions for the phase velocity of
  • Rayleigh waves, Nanotechnology 16 (2005), 995-996.             
  • P. Malischewsky; J.-D. Schnapp; A. Ziegert: The ellipticity of Rayleigh waves and non-destructive testing, ECNDT, Berlin 2006, We. 2. 4. 3.
  • V. Pham; P. G. Malischewsky: Explanation for Malischewsky's approximate expression for the Rayleigh wave velocity, Ultrasonics 45 (2006), 77-81.
  • Pham Chi Vinh; P. G. Malischewsky: An approach for obtaining approximate formulas for the Rayleigh wave velocity, Wave Motion 44 (2007), 549-562.
  • Pham Chi Vinh; P. G. Malischewsky: An improved approximation of Bergmann's form for the Rayleigh wave velocity, Ultrasonics 47 (2007), 49-54.
  • Pham Chi Vinh; P. G. Malischewsky: Improved approximations of the Rayleigh wave velocity, J. of Thermoplastic Composite Materials 21 (2008), 337-352.
  • P. Malischewsky; Tran Thanh Tuan: A special relation between Young's modulus, Rayleigh-wave velocity, and Poisson's ratio, J. Acoust. Soc. Am. 126 (2009), 2851-2853.

 

6. Auxetic materials

  • F. Scarpa; P. G. Malischewsky: Some new considerations concerning the Rayleigh-wave velocity in auxetic materials, Phys. Stat. Sol. 245 (2008), 578-583.
  • Pham Chi Vinh; P. G. Malischewsky: Improved approximations for the Rayleigh wave velocity in [-1, 0.5], Vietnam J. of Mechanics, 30 (2008), 347-358.
  • P. Malischewsky; A. Lorato; F. Scarpa; M. Ruzzene: Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics, Phys. Stat. Sol. 249 (2012), 1339-1346.

 

7. Seismometry

  • . Malischewsky; Ch. Teupser; W. Ullmann: General Theory of the Vertical Seismograph with special Regard to the Type VSJ-I (in German), Akademie-Verlag, Berlin 1970.
  • K. D. Klinge; P. Malischewsky; B. Tittel: Historical seismological instruments and documents in East German stations and in the castle of Ranis, Proc. of the workshop "Historical Seismic Instruments and Documents: a Heritage of Great Scientific and Cultural Value". Luxemburg, 1997, 61-71.

 

8. Theory of Fractals

  • P. G. Malischewsky: A very special fractal: Gingko of Jena, Geofisica Internacional 53 (2014), 95-100.

 

9. Miscellaneous

  • P. Malischewsky: Obituary Cinna Lomnitz (1926-2016), IASPEI Newsletter December 2016, 4-5.
  • P. Malischewsky: In Memoriam Cinna Lomnitz (1926-2016), Geofisica Internacional, 55 (2016) 4, 1-2.
  • P. Malischewsky: In Memoriam Cinna Lomnitz (1926-2016), DGG-Mitteilungen 3/2016, S. 40.
  • P. Malischewsky: The Wiechert painting in the former Institute of Earthquake Research (in German), In: Festschrift 25 Jahre Institut für Geowissenschaften, FSU Jena 2018, 83-91.