
Appendix A. Balance equations

We use a combined numerical strategy for modelling convection by solid-
state creep in the Earth’s mantle as well as partial melting in some of the
upper regions of the mantle, processes that lead to the segregation and for-
mation of the precursors of continental crustal material as well as mixing
within the remaining mantle. We solve differential equations relating to
infinite Prandtl-number convection using a three-dimensional finite-element
spherical-shell method that ensures the conservation of mass, momentum,
and energy. The mass balance

∂ρ

∂t
+▽ · (ρ~v) = 0 (A.1)

with an anelastic-liquid approximation simplifies to

▽ · ~v = −
1

ρ
~v · ▽ρ (A.2)

where ρ is density, t is time, and ~v is velocity.
The conservation of momentum can be written as

ρ

(

∂~v

∂t
+ ~v · ▽~v

)

= −▽ P + ρ~g +
∂

∂xk

τik (A.3)

where P is pressure, ~g is acceleration due to gravity, and τik is the devia-
toric stress tensor. Spherical symmetry is modelled using ~g = −g~er and the
hydrostatic pressure gradient is defined as

−
∂P

∂r
= ρg (A.4)

By definition, KS = −V
(

∂P
∂V

)

S
and V

V0

= ρ0
ρ
, where KS is the adiabatic bulk

modulus, V is volume, S is entropy, and r is the radial distance from the
Earth’s centre. Hence,

KS = ρ

(

∂P

∂ρ

)

S

= ρ

(

∂P

∂r

)

S

(

∂r

∂ρ

)

S

(A.5)

Substituting Eq. (A.4) into Eq. (A.5) yields
(

∂ρ

∂r

)

S

=
−ρ2g

KS

(A.6)
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If horizontal spatial variations in ρ are ignored, Eqs. (A.2) and (A.6)
yield

▽ · ~v = −
1

ρ
~v · ▽ρ ∼= −

1

ρ
vr
∂ρ

∂r
=

ρgvr
KS

(A.7)

It is well known that

KS =
cp
cv
KT = (1 + αγthT )KT (A.8)

where KT is the isothermal bulk modulus, cp is specific heat at a constant
pressure, cv is specific heat at a constant volume, α is the coefficient of
thermal expansion, γth is the thermodynamic Grüneisen parameter, and T is
the absolute temperature.

This means that eq. (A.3) can be rewritten as

ρ
dvi
dt

= ρgi +
∂σki

∂xk

(A.9)

This in turn means that the energy balance can be expressed as follows

ρ
du

dt
+

∂qi
∂xi

= Q+ σikε̇ik (A.10)

where u is specific internal energy, Q is heat generation rate per unit volume,
and vi, gi, qi, xi, σik, and ε̇ik are velocity, gravity acceleration, heat flow
density, location vector, stress tensor, and strain-rate tensor components,
respectively.
Another formulation of Eq. (A.10) is

ρ

[

∂

∂t
+ ~v · ▽

]

u = ▽ · (k ▽ T ) +Q− P ▽ ·~v + 2WD (A.11)

where
2WD = σikε̇ik + P ▽ ·~v (A.12)

and

qk = −k
∂T

∂xk

(A.13)

with k indicating thermal conductivity. Using

du = T ds− P dv (A.14)

2



and

du = T

(

∂s

∂T

)

P

dT + T

(

∂s

∂P

)

T

dP − Pdv (A.15)

eliminates specific internal energy (u) in Eq. (A.11), yielding the following
equation

ρcp
dT

dt
= ▽ · (k ▽ T ) +Q+ αT

dP

dt
+ 2WD (A.16)

as

cp = T

(

∂s

∂T

)

P

and

(

∂s

∂P

)

T

= −

(

∂v

∂T

)

P

= −vα (A.17)

where s represents specific entropy, v specific volume, cp specific heat at a
constant pressure, and α the coefficient of thermal expansion.

A less well-known version of the energy balance can be deduced, as Eq.
(A.11) is equivalent to

ρ

(

du

dt
+ P

dv

dt

)

= τik
∂vi
∂xk

+▽ · (k ▽ T ) +Q (A.18)

because of Eq. (A.2) and 1

ρ
= v.

Inserting Eq. (A.14) into Eq. (A.18) yields

ρT
ds

dt
= τik

∂vi
∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+Q (A.19)

However,

ds =

(

∂s

∂T

)

v

dT +

(

∂s

∂v

)

T

dv (A.20)
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and
(

∂s

∂T

)

v

=
cv
T

,

(

∂s

∂v

)

T

= αKT (A.21)

suggests that

Tds = cvdT + αKTTd

(

1

ρ

)

(A.22)

or

Tds = cvdT −
cvγT

ρ
dρ (A.23)

where

γth =
αKT

cvρ
(A.24)

indicates the thermodynamic Grüneisen parameter.
Inserting Eq. (A.23) into Eq. (A.19) yields

ρcv
dT

dt
− cvγT

dρ

dt
= τik

∂vi
∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+Q (A.25)

with Eqs. (A.1) and (A.25) yielding

ρcv
dT

dt
= −ρcvγT

∂vj
∂xj

+ τik
∂vi
∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+Q (A.26)

or

∂T

dt
= −vj

∂

∂xj

T − γT
∂vj
∂xj

+
1

ρcv

[

τik
∂vi
∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+Q

]

(A.27)

or

∂T

∂t
= −

∂(Tvj)

∂xj

−(γ−1)T
∂vj
∂xj

+
1

ρcv

[

τik
∂vi
∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+Q

]

(A.28)

This is an alternative formula for energy conservation. Although cv appears
in Eq. (A.28), the latter expression is equivalent to Eq. (A.16), which uses
cp. The deviatoric stress tensor can be expressed by

τik = η

(

∂vi
∂xk

+
∂vk
∂xi

−
2

3

∂vj
∂xj

δik

)

(A.29)

in Eqs. (A.3) and (A.28), where η denotes viscosity.
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As an equation of state we use

ρ = ρr

[

1− α(T − Tr) +K−1

T (P − Pr) +

2
∑

k=1

Γk∆ρk/ρr

]

(A.30)

where the index r refers to the adiabatic reference state, ∆ρk/ρr or fak de-
notes the non-dimensional density jump for the kth mineral phase transi-
tion, and Γk is a measure of the relative fraction of the heavier phase, where

Γk =
1

2

(

1 + tanh πk

dk

)

with πk = P −P0k−γkT describing excess pressure πk.

The quantity P0k is the transition pressure for the vanishing temperature T .
A non-dimensional transition width is denoted by dk, with γk representing
the Clausius–Clapeyron slope for the kth phase transition. Γk and πk were
introduced by Richter (1973) and Christensen and Yuen (1985),
with the presence of very high Prandtl numbers meaning that the left-hand
side of Eq. (A.3) vanishes. As such, we use the following version of the
equation of conservation of momentum:

0 = −
∂

∂xi

(P − Pr) + (ρ− ρr)gi(r) +
∂

∂xk

τik (A.31)

The final version of the conservation of mass equation is

0 =
∂

∂xj

ρvj , (A.32)

which stems from Eq. (A.2). Equations (A.28), (A.30), (A.31) and (A.32)
are a system of six scalar equations that can be used to determine six scalar
unknown functions, namely T , ρ, P , and the three components of vi.
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