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Abstract
The aim of the present study, an extension of a recent one (Bose Roy and
Bose Roy 2005 J. Phys.: Condens. Matter 17 6193), is to assess and compare
the curve-fitting utility of the isothermal unrealistic two-parameter equations
of state for solids (EOS), proposed at different stages in the development of
the EOS field, for the purposes of smoothing and interpolation of pressure–
volume data, and extraction of accurate values of the isothermal bulk modulus
and its pressure derivative. To this end, 21 such EOSs are considered,
formulated by/labelled as Born–Mie (1920), Born–Mayer (1932), Bardeen
(1938), Slater–Morse (1939), Birch–Murnaghan (1947), Pack–Evans–James
(1948), Lagrangian (1951), Davydov (1956), Davis and Gordon (1967),
Onat and Vaisnys (1967), Grover–Getting–Kennedy (1973), Brennan–Stacey
(1979), Walzer–Ullmann–Pan’kov (1979), Rydberg (1981), Dodson (1987),
Holzapfel (1991), Parsafar–Mason (1994), Shanker–Kushwah–Kumar (1997),
Poirier–Tarantola (1998), Deng–Yan (2002) and Kun–Loa–Syassen (2003).
Furthermore, all these EOSs are compared with our three-parameter EOS, as
well as its two-parameter counterpart proposed in this work. We have applied
all the EOS models, with no constraint on the parameters, to the accurate
and model-independent isotherms of nine solids. The applicability has been
assessed in terms of an unbiased composite test, comprising fitting accuracy,
agreement of the fit parameters with experiment, stability of the fit parameters
with variation in the compression/pressure ranges and on the basis of the number
of wiggles of the data deviation curves about the fit parameters. Furthermore,
a rigorous method is devised to scale the relative adequacy of the EOSs with
respect to the test parameters. A number of remarkable findings emerge from
the present study. Surprisingly, both the old EOSs, the Born–Mie and the Pack–
Evans–James, are significantly better in their curve-fitting capability than the
Birch–Murnaghan EOS which has been widely used and continues to be used
for curve-fitting purposes as a standard EOS in the literature. The Born–Mayer
as well as the Walzer–Ullmann–Pan’kov models also fit isotherms better than
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the Birch. The performance of the EOS based on the Rydberg potential—that
has been rediscovered by Rose et al (1984 Phys. Rev. B 29 2963), and strongly
promoted by Vinet et al (1989 J. Phys.: Condens. Matter 1 1941) as the so-
called universal equation of state, and is currently used as a standard EOS along
with that of the Birch—is very poor, on a comparative scale. Furthermore,
the curve-fitting capability of our original three-parameter EOS, and more
importantly its two-parameter counterpart, is superior to all the isothermal
unrealistic two-parameter EOSs so far proposed in the literature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A fundamental problem in high-pressure research is the formulation of a well-behaved equation
of state (EOS) for solids which should be capable of accurately representing the curvature of the
experimental compression data ranging to high pressures. A successful EOS model based on a
complete physical basis would provide an insight into the esoteric nature of the variation of the
interatomic interaction that comes into play with the increasing pressure. But unfortunately no
such model is known to date. Derivation of the exact equation of state for solids is a many-body
interaction problem. Because of the highly complex nature of the variation of the interatomic
interaction with increasing pressure, a theoretical idealization of the exact physical situation
entailing the changes in the widely varying structural and bonding characteristics of solids has
thus far proved elusive. However, the question as to which of the several existing empirical
EOS models is likely to be most appropriate, that is which one is the closest approximation
to the experimental situation, is of considerable importance in the largely empirical EOS field,
and needs to be addressed.

Theoretical efforts to derive equation of state for solids, using various techniques [1–5],
have thus far failed to provide a viable alternative for the role of an empirical EOS model, and
consequently on the completion of a time-consuming expensive experiment on the compression
of solids one continues to look for an EOS that behaves best for the purposes of smoothing
and interpolating pressure–volume data, and extracting accurate values of thermodynamic
parameters like the isothermal bulk modulus and its pressure derivative. An EOS model finds
numerous important applications [6–10], and is important in its own right. EOSs now have to
face new challenges in view of the advances on the experimental front [11, 12], especially the
horrendous pressure and temperature ranges now achievable in the laboratory environment [13],
in order to prove their adequacy.

Various empirical functional forms, based on different implicit and explicit assumptions,
have been proposed in the literature, for over a century now; proponents of all of them claiming
an accurate representation of the experimental pressure–volume data. A survey of the high-
pressure literature clearly reveals that most of the EOSs have not been compared with all the
existing EOSs to assess their curve-fitting capability for the laboratory compression data. And
in most cases where a comparison is made it is restricted to a few of the existing EOSs, best
suited to the authors, to uphold the superiority or utility of their proposed models—and that too
often in line with an inappropriate and inadequate method and not infrequently using model-
biased data. This is why a widespread misunderstanding has arisen in the literature regarding
the relative curve-fitting capability of the existing EOSs. In a recent study [14] we established
an unbiased stringent discrimination technique for establishing a ‘preferred’ representation for
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the curve of a set of compression data; and compared a number of isothermal three-parameter
EOSs, considered viable at different stages in the development of the EOS field. Applying
this discrimination technique we arrived at a secure conclusion on the curve-fitting capability
of three-parameter EOSs, and showed that our three-parameter EOS [15] is superior to all the
three-parameter EOSs thus far proposed in the literature. The aim of the present study is to
extend the work to the intercomparison of the curve-fitting capability of the two-parameter
EOSs, following a discrimination technique—the harshest ever designed and applied in the
literature—and thus to put to rest any speculation with regard to their curve-fitting capability.
There is a plethora of rival isothermal two-parameter EOSs in the literature, and it would be an
unwieldy exercise to compare the curve-fitting capability of all of them in a single paper; and
this is why we have confined ourselves in the present work to the unrealistic EOSs, i.e. to those
expressible in the P = f (V/V0) forms, only. We have compared our original three-parameter
EOS along with its two-parameter counterpart with 21 one such existing unrealistic EOSs in
the literature.

2. Empirical equations of state

The science of high-pressure equations of state for solids is a largely empirical field. In this
section we present as many as 21 empirical isothermal two-parameter EOSs, expressible in
unrealistic forms only—along with our three-parameter realistic EOS and its realistic two-
parameter counterpart. Constancy of temperature is assumed throughout and no special
notation is used. V and V0 denote volume at pressure P and zero, respectively, and x =
(V/V0)

1/3 is the linear compression. While B0, B ′
0 and B ′′

0 denote the isothermal bulk modulus
and its first and second pressure derivatives, respectively, at zero pressure.

A potential function of the general form based on the century-old potential (1903) proposed
by Mie [17] and extended by Gruneisen [18, 19], is

E(r) = −A(a/r)m + B(a/r)n. (1)

Here a is the equilibrium (zero-pressure) value of atomic spacing r . A and B are positive
constants with the dimensions of energy and m, n are dimensionless indices (n > m), often,
but not necessarily, integers. Commonly the first term is identified as an attractive term and the
second as a repulsive one, but this is not a necessary interpretation [20].

The three-parameter EOS built on this well-known potential [21], which is the precursor
of a number of EOSs and hereafter referred to as Mie–Gruneisen EOS, is

P = {3B0/(n − m)}[(V/V0)
−{1+(n/3)} − (V/V0)

−{1+(m/3)}], (2)

where, n = 3[(1/2)(B ′2
0 + 4B0 B ′′

0 )1/2 + (1/2)B ′
0 − 1], m = 3[(1/2)B ′

0 − 1 − (1/2)(B ′2
0 +

4B0 B ′′
0 )1/2], and (n − m) = 3(B ′2

0 + 4B0 B ′′
0 )1/2.

It may be noted here that a number of EOSs have appeared in the literature where m and
n are regarded as disposable parameters with specific choices. Born [22] suggested that m = 1
be favoured as a representation of electrostatic attraction, and thus equation (1), retaining the
inverse power form for the short-range repulsive potential energy, leads to the well-known two-
parameter Born–Mie EOS [23–26]. It will be interesting to note that over five decades ago
Ramsey dealt at length with the limits and applicability of the following Born–Mie EOS ([24],
and citations therein), in the context of geophysical data:

P = [3B0/(3B ′
0 − 8)] × [(V/V0)

{(4/3)−B ′
0} − (V/V0)

−4/3] (3)

Walzer, Ullmann and Pan’kov (1979) [27] as well as Ullmann and Pank’ov [28] suggested
the use of the Mie–Gruneisen EOS (1), but with a requirement that n = 2m, so that
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m = (B ′
0 − 1) and n = 2(B ′

0 − 1). And thus they favoured the pressure–volume relation

P = {3B0/(B ′
0 − 2)}[{(V/V0)

−[1+{(2(B ′
0−2))/3}]} − {(V/V0)

−[1+{{B ′
0−2)/3}]}]. (4)

While in the Born–Mayer potential [29–31],

φ = −Aa/r + B exp(− f a/r), (5)

the power-law repulsion of the Mie potential is replaced with an exponential repulsion, in line
with the teachings of quantum mechanics; but the electrostatic attractive term, of the Madelung-
type 1/r as suggested by Born, is retained. f is related to B ′

0:

f = (3/2)(B ′
0 − 1) + (3/2)[B ′2

0 − (14/3)B ′
0 + (19/3)]1/2, (6)

and the EOS obtained is

P = {3B0/( f − 2)}[((V/V0)
−2/3){exp f (1 − (V/V0)

1/3)} − (V/V0)
−4/3]. (7)

An EOS that has been widely used for over five decades now, as a standard EOS in the
literature, is the Birch–Murnaghan EOS [32–37]. It is founded on a stress–strain formalism
based on the bulk property of an elastic solid. As is well known in continuum mechanics that
there is no unique frame of reference that describes finite deformations, and as such there is
no unique definition of strain [37–39]. This ambiguity necessitated the use of a ‘generalized’
definition of the strain variable for quantifying volumetric compression [40, 41],

f = (1/n)[(V0/V )n/3 − 1]. (8)

Defined this way, the strain is positive on compression, and it is assumed to be isotropic [42].
Here n is just a parameter that allows one to vary the strain from an Eulerian (n = 2) to a
Lagrangian (n = −2) frame of [43].

Birch [34] expanded the free energy as a Taylor power series in Eulerian strain measure
and obtained the following two-parameter EOS, on truncation at the third-order term of energy
in strain:

P = 3B0 f (1 + 2 f )5/2[1 + a1 f + · · ·] (9)

with a1 = 3/2(B ′
0 − 4), and f = (1/2)[(V/V0)

−2/3 − 1].
This equation has achieved prominence in the literature as the Birch–Murnaghan EOS

through its application by Birch [32–36] and others to problems of finite compression in the
interior of the earth. It was apparently first written by Murnaghan [43] in an early exposition of
the thoughts which led eventually to his 1951 treatise [44].

A similar exercise of expansion of the free energy as a Taylor power series in Lagrangian
strain measure, and truncation, yields the third-order Lagrangian isotherm:

P = (3/2)B0[(V/V0)
−1/3 − (V/V0)

1/3][1 − (3/4)B ′
0{(V/V0)

2/3 − 1}]. (10)

This equation appears in Murnaghan’s 1951 monograph [37, 44]. It is important to note here
that approximations made in free energy, required for application to real solids, affect the
results of the choice of a definition of strain, and hence the stress–strain relations, equations (9)
and (10), are not exact.

Further, it will be interesting to note that the Mie–Gruneisen equation (1), with m = 2 and
n = 4, yields the same two-parameter Birch–Murnaghan EOS as given in equation (9).

An EOS was derived by Bardeen from quantum mechanics [20, 40, 45] using the Wigner–
Seitz model [46, 47] to explain compressions of alkali metals:

P = 3B0[(V/V0)
−5/3 − (V/V0)

−4/3][1 + (3/2)(B ′
0 − 3){(V/V0)

−1/3 − 1}]. (11)
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Considerations by Gombas [48] suggested the possibility of a wider application in the case
of metals. However, we are interested in investigating the generality of its application.
Furthermore, it will be interesting to note that the Bardeen EOS is equivalent to the two-
parameter equation of state obtained with n = 1 in the generalized strain (8).

The first quantum-based potential, that continues to assume importance in the theoretical
thermodynamic studies of solids, was proposed by Morse [49, 50] to explain the vibrational
spectrum of the H2 molecule, and is presented as

φ = A{exp[2 f (1 − (r/a))] − 2 exp[ f (1 − (r/a))]}. (12)

where the constant A is the binding energy at equilibrium spacing a, and r/a = (V/V0)
1/3.

Slater [51] used this potential in a finite strain theory to generate an EOS for solids:

P = (x−2){3B0/(B ′
0 − 1)}[exp(2(B ′

0 − 1)(1 − x)) − exp((B ′
0 − 1)(1 − x))], (13)

with f = (B ′
0 − 1).

Shortly afterwards Rydberg [52] came up with a modified version of the Morse potential,
achieving an improved fit to the vibrational spectrum of diatomic molecules,

φ = A[1 − f (1 − (r/a))][exp{ f (1 − (r/a))}]. (14)

This potential leads to an EOS,

P = 3B0(1 − x)(x−2) exp[(3/2)(B ′
0 − 1)(1 − x)]. (15)

Equation (15), based on the Rydberg atomic potential function, appears in a catalogue of finite
strain theories that were compared with seismological data (equation (102) in [20]). Rose et al
rediscovered it [53] and Vinet et al [54, 55] dubbed it a universal equation of state. Currently
it has been referred to as the ‘Vinet equation’, obviously a misnomer. Perhaps, typographical
errors in the aforesaid equation (102) [56] or apparently an ignorance of its long history [21]
might have hindered an immediate appreciation of the resemblance between the two.

Equation (15) is based on certain empirical observations of universal scaling behaviour in
the binding energies of metal as reported by Rose et al [53, 57–59]. It is based on an expression
for the cohesive energy of a condensed system that is assumed to vary only as a function of a
normalized interparticle separation (a∗). Specifically, the energy is given in normalized form
as E∗(a∗) = −(1 + a∗ + · · ·) exp(−a∗), in which higher-order terms in the Taylor expansion
are ignored in deriving equation (15). The presence of the exponential term in the energy has
been explained in a general way as reflecting the typical form of interatomic repulsions [60].
However, although the work of Rose et al [57] is based on metallic adhesive binding-energy
calculations, the universal scaling behaviour reported by them is not the result of any underlying
theory of structural energetics, and is thus empirical in nature [61].

Davydov [20, 62, 63] proposed a potential, akin to both the Morse and Rydberg
expressions, as

E(r) = {A(a/r) − B}[exp{ f (1 − (a/r))}], (16)

and the EOS resulting from the above potential is

P = {3B0/( f + 2)}[x−4 + f x−3 − ( f + 1)x−2][exp{ f (1 − x)}]. (17)

Here, f = (3/4)[(B ′
0 − 3) + {(B ′

0 + 1)(B ′
0 − (5/3))}1/2].

Pack et al [64] recognized that quantum-mechanical theories indicated that the repulsive
components in atomic potentials depend exponentially upon atomic separation. They further
argued that at very high pressures the attractive components become insignificant and they
therefore proposed a finite strain relationship that neglected them [20]:

P = {B0/(B ′
0 − 1)}{exp[3(B ′

0 − 1){1 − (V/V0)
1/3}] − 1}{(V/V0)

−2/3}. (18)
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Davis and Gordon [65] formulated a two-parameter analytical equation for the pressure
dependence of the volume, using a Taylor series expansion of the pressure in powers of V0/V ,
about V0/V = 1 or V = V0, and restricting to the quadratic term,

P = B0{(x−3) − 1} + (1/2)B0(B ′
0 − 1){(x−3) − 1}2. (19)

Following an alternative though related approach, Onat and Vaisnys [65] expanded the
pressure in powers of ln V about V = V0, and formulated the following expression:

P = −B0(ln x3) + (1/2)B0 B ′
0(ln x3)2 (20)

Grover et al (1973) [66, 67] observed that isothermal compression data derived from
shock-wave and static compression measurements on metals exhibit a nearly precise linear
relation between the logarithm of the bulk modulus and the specific volume up to volume
changes of 40%. This observation prompted them to represent the increase in B with P as a
logarithmic dependence on volume compression, �V/V0 = (V0 − V )/V0 = (1 − V/V0),

ln B = ln B0 + α{1 − (V/V0)}. (21)

However, the series solution of the P(V/V0) relationship in the form of an exponential integral,
obtainable on integration of equation (21), is not sufficiently convergent to be useful [20],
implying that this equation cannot be integrated to obtain P(V/V0) in terms of simple
functions. Recognizing this inconvenient position, Grover et al presented an expression, in
line with the suggestion of Vaidya [66],

B = B0 + {(α + (V0/V ))/(α + 1)}[exp{α(�V/V0)}]. (22)

On differentiating equation (22) with pressure, and putting V = V0 at P = 0, two values of α

in terms of B ′
0 are obtained, of which the negative value of α, being physically implausible, is

discounted. And thus the EOS formulated by Grover et al is

P = {B0/(α + 1)}[{(V0/V )(exp α(1 − (V/V0)))} − 1], (23)

with, α = [(B ′
0 − 1) + (B ′2

0 + 2B ′
0 − 3)1/2]/2.

It is important to note that the original equation (21) for the bulk modulus yields the
following relationship:

B ′ = B ′
0(V/V0). (24)

In the limit P → α, V/V0 → 0 and equation (24) leads to B ′ → 0. While equation (22),
under similar situations, predicts B ′ → 1. Thus equation (22), unlike equation (21), is not in
conflict with the thermodynamic dictum B ′

α � 1 [68], and as such is more consistent with the
theoretical point of view. Further, it may be noted that equation (23) used by us in the present
study is different from the other forms of EOS attributed to Grover et al [69–71].

With the classical assumption of the constancy of Cv , at sufficiently high temperatures
(and in minerals that are not too near to phase transitions), one can have the thermal
Gruneisen parameter γ inversely proportional to density ρ. Coupling this equation with
the free volume formulation for γ [72] and taking the second Gruneisen constant q = 1,
Brennan and Stacey [73] proposed the following high-pressure EOS, apparently based on a
clear thermodynamic basis:

P = {3B0/(3B ′
0 − 5)}{(V/V0)

−4/3}[{exp((3B ′
0 − 5)/3)(1 − (V/V0))} − 1]. (25)

The first well-founded theoretical indication that there was some degree of universality in
the compressibility of metals came from the extensive density-functional calculations of the
ground states of elemental solids performed by Moruzzi and co-workers [74]. Taking a cue
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from their observation of a universal relation between the bulk modulus and interstitial electron
density, Dodson [61] has suggested an empirical EOS:

P = {1.5B0/(1 − β)2}[(1/x2) − (4β/x) − 2β2(ln x) + 4β − 1], (26)

where β = 1 − (2/3B ′
0).

Following an idea [75, 40] vigorously pursued, Holzapfel [76, 77] argued that at extreme
pressure all materials are expected to convert to a Thomas–Fermi state [78, 79], and that
equations of state should extrapolate smoothly to meet the Thomas–Fermi theory, which
requires B ′∝ = 5/3. And accordingly the Rydberg EOS (15) was tailored, imparting to it the
desired asymptotic attribute to suit the Thomas–Fermi condition at very strong compression,
and thus generating a modified version of the Rydberg EOS:

P = 3B0(V/V0)
−5/3{1 − (V/V0)

1/3} exp[C02{1 − (V/V0)
1/3}], (27)

with C02 = (3/2)(B ′
0 − 3).

Stacey et al [21, 80], however, pointed out that equation of state parameters cannot survive
the phase transitions that inevitably intervene on the pathway to the extreme Thomas–Fermi
condition. They further argued that parameters for the Thomas–Fermi state have no relevance
to normal materials, and B ′∝ for a material in its observed state is not related to properties of
something that it does not in the least resemble—and thus equation (27) lacks a theoretical
justification.

Parsafar and Mason [81] derived a universal equation of state for compressed solids, based
on thermodynamic arguments applied to virial expansions of E(ρ, T ) and ρ(ρ, T ), of the form
ρ(V/V0) = A0 + A1(ρ/ρ0) + A2(ρ/ρ0)

2 as

P = {(1/2)B0(x−6)}[(B ′
0 − 7) − 2(B ′

0 − 6)(x−3) + (B ′
0 − 5)(x−6)]. (28)

Shanker et al [82] formulated an equation of state using a combined form of an inverse
power dependence and exponential dependence for the short-range force constant on volume,
as

P = [{B0(x−4)}/t][{1 − (1/t) + (2/t2)}{exp(ty) − 1} + y{1 + y − (2/t)} exp(ty)], (29)

where y = 1 − x3 and t = B ′
0 − 8/3.

Based on the Hencky logarithmic strain, Poirier and Tarantola [83] arrived at an EOS,

P = [B0(x−3)][(ln(x−3)) + ((B ′
0 − 2)/2)(ln(x−3))2]. (30)

They claimed that their Hencky measure of strain is superior to that of the Eulerian strain used
by Birch. Gaurav et al [56], using a typical value for B ′

0, demonstrated that the free energy
expansion to fourth order in powers of Hencky strain is not convergent, contrary to their claim,
unlike that of Eulerian strain. It will be interesting to study their claim in the light of their
capability to describe the model-independent data.

The phenomenological EOS derived by Deng and Yan [84], within the framework of the
theory of lattice potential for ionic crystals, and based on the Born–Mayer exponential potential
model [31] and the method developed by Shanker et al (1997) [82], is

P = {3B0/(3B ′
0 − 8)}{(V/V0)

−4/3}[((V/V0)
2/3){exp{3(B ′

0 − 2)(1 − (V/V0)
1/3)}} − 1].

(31)

Kunc et al (2003) [85] calculated the pressure–volume relationship of cubic diamond,
an archetype of the covalently bonded tetrahedrally coordinated insulators, based on density-
functional theory within the local-density approximation and the generalized gradient
approximation. They needed to identify an analytical form of the P(V ) behaviour which, using
their theoretically calculated stress-free bulk moduli parameters, fits the calculated pressures
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over the full volume range. They tried several of the existing EOSs and finally identified the
best analytical expression, in the least-squares sense, as

P = {3B0(V/V0)
−n/3}{1 − (V/V0)

1/3}[exp{η(1 − (V/V0)
1/3)}], (32)

where η = (3B ′
0/2) + (1/2) − n and n = 7/2. With n = 7/2, equation (32) is a blend of the

Rydberg form and the Holzapfel expression, for which n = 2 and n = 5, respectively.
Bose Roy and Bose Roy [14–16] proposed an isothermal empirical EOS model,

V/V0 = 1 − [(ln(1 + a P))/(b + cP)]. (33)

Putting m = [3(B ′
0 + 1){(25B ′2

0 + 18B ′
0 − 32B0 B ′′

0 − 7)1/2}], one obtains

a = (m/8B0), b = (m/8), and c = [(m/16){(B ′
0 + 1) − (m/8)}].

In order to assess the robustness of this three-parameter model, it is reduced to a two-
parameter EOS by imposing a constraint (B ′

0/B0) = −B ′′
0 on equation (33). Putting n =

[3(B ′
0 + 1){(25B ′2

0 + 50B ′
0 − 7)1/2}], the pressure-independent parameters for the new two-

parameter EOS (equation (34)), reduces to

a = (n/8B0), b = (n/8); and c = [(n/16){(B ′
0 + 1) − (n/8)}].

We label the original three-parameter EOS (33) as Bose Roy–Bose Roy* to distinguish it
from the two-parameter EOS (34), labelled as Bose Roy–Bose Roy, throughout the study.

3. Application to model-independent isotherms

All the 23 EOSs presented in section 2 are fitted to the EOS data of nine solids, namely Ag,
Al, Cu, Mg, Pd, MgO [86], NaCl [87] and Mo and W [88]—corresponding to the regression
curves of P on V/V0. A departure from our previous study [14], with respect to the use of
the isotherm of Cu, may be noted here. In the present study, the model-independent isotherm
of Cu ranging to 1600 kbar is chosen instead of Nellis et al’s isotherm of Cu [89] ranging
to the terapascal regime. We have noted that none of the 22 isothermal two-parameter EOSs
considered succeed in successfully describing the curvature of the ultra-high-pressure isotherm
of Cu [89]. An obvious limitation of the two-parameter EOSs in describing the ultra-high-
pressure/compression of isotherms is thus immediately apparent. The EOS data considered
are model-independent and accurate enough to allow a meaningful discrimination between the
curve-fitting capabilities of the EOSs, as noted in our recent study [14]. The original isotherms
of the above solids, referred to hereafter as the high-pressure isotherms, are abbreviated as
HPIs. The subsets of these HPIs, from the pressure values P = 0 to a low-pressure maximum,
referred to hereafter as low-pressure isotherms, are abbreviated as LPIs. Table 1 shows the
details related to these HPIs and LPIs. The experimental bulk modulus values, chosen for
the purpose of comparison with the fit parameters for HPIs, are presented in table 2. The
rationale for selecting these bulk moduli data has been discussed in our earlier work [16]. The
root-mean-square deviations (RMSDs) between the data points (HPIs) and fits are reported in
table 3. The values of the bulk modulus parameters, as such, are not shown. The deviation
parameters, Di (i = 1, 2, 3, 4), which are more important and meaningful for comparing the
applicability of the EOSs, are computed instead, and summarized in tables 4–7. D1 values refer
to the percentage deviations of the fit values of B0 inferred from the HPIs from those of the fit
values of B0 inferred from the LPIs, for all the isotherms of the solids considered. Likewise, D2

values refer to the corresponding deviations of B ′
0. While D3 and D4 values are the percentage

deviations of the fit parameters B0 and B ′
0 from the corresponding experimental values. It may

be noted that since our three- and two-parameter EOSs cannot be explicitly expressed in the
unrealistic form, we have implicitly calculated the regression curves of P on V/V0 for them
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Table 1. Details related to the isotherms of solids and their subsets, used in the study. n denotes
the number of data points.

High-pressure isotherm Low-pressure isotherm
(LHPI) (HLPI)

T Pmax Pmax

Solids Reference (K) n (kbar) MRVa n (kbar) MRVa

Ag [86] 293 57 1500 0.6519 29 145 0.9017
Al [86] 293 49 1100 06083 20 100 0.9010
Cu [86] 293 59 1600 0.6624 30 150 0.9150
Mg [86] 293 41 700 0.5510 8 40 0.9081
Mo [88] 293 30 3000 0.6305 8 800 0.8167
Pd [86] 293 67 2000 0.6831 32 250 0.9018
W [88] 293 30 3000 0.6552 8 800 0.8347
MgO [86] 293 51 1200 0.7046 31 200 0.9017
NaCl [87] 293 40 200 0.7023 8 40 0.8849

a Minimum relative volume.

Table 2. Experimental values of B0 and B ′
0 used for comparison purposes.

B0 (Expt.)
Solids (kbar) Reference B ′

0 (Expt) Reference

Ag 1047a [90]; 5.53 [92]
[91]

Al 742 ± 8 [93] 4.72 [94]
Cu 1374b [90]; 5.25 [95]

[91];
[97]

Mg 344.20 [96] 4.16 [96]
Mo 2653 [90] 4.5 ± 0.5 [97]
Pd 1808 [91] 5.3 ± 0.2 [97]
W 3084 [98] 4.0 ± 0.2 [97]
MgO 1560 [99] 4.52 [100]
NaCl 238.35 [101] 5.11 [102]

a An average of two values.
b An average of three values.

and compared the results with those from the explicit curve-fittings of P on V/V0 for the rest
of the EOSs, for the sake of definitiveness in comparison.

3.1. Fitting accuracy; fit parameters—stability and agreement with experiment

In our previous study [14] we adopted a simple statistical path, wherein an EOS for which
deviation points for five or more isotherms (against a total of nine isotherms considered) were
lower in magnitude, compared to those of others, was credited with a higher adequacy on a
relative scale of adequacy. In the present study, however, we have devised a rigorous but simple
method, comprising two complementary approaches to assess the relative adequacy of the EOSs
with respect to the test parameters entailing the deviation points, i.e. D1, D2, D3, D4 and
RMSD. In the first approach, labelled the collective isotherm approach (CIA), the inconsistency
(non-uniformity) between the deviation points is taken into consideration. The deviation points
(DPs), inferred from an EOS for all the nine isotherms, are arranged in a row in ascending order
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Table 3. Root-mean-square deviations (RMSDs) (in kbar) between the data points and fits
corresponding to the regression curves of P on V/V0 (in kbar) for selected solids.

2-parameter EOSs Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy* 0.18 0.20 0.19 0.19 1.03 0.24 0.36 0.23 0.08
2 Bose Roy–Bose Roy 0.89 0.55 0.79 0.46 1.04 1.13 0.40 0.54 0.48
3 Born–Mie 1.73 0.45 1.21 0.86 1.39 1.46 0.69 0.45 0.50
4 Pack–Evans–James 2.04 0.52 1.41 1.07 1.59 1.70 0.77 0.49 0.49
5 Walzer–Ullmann–Pan’kov 2.65 0.53 1.89 1.06 1.58 2.40 0.75 0.71 0.46
6 Born–Mayer 2.85 0.94 2.19 1.49 2.58 2.58 1.60 0.94 0.42
7 Birch–Murnaghan 3.19 0.47 1.93 0.98 1.78 2.85 0.86 0.61 0.47
8 Deng–Yan 2.85 0.94 2.19 1.49 2.58 2.58 1.60 0.94 0.42
9 Parsafar–Mason 2.28 1.51 1.74 2.05 5.82 2.04 4.34 0.96 0.41

10 Holzapfel 3.83 0.96 2.86 1.46 2.23 3.60 1.32 1.14 0.38
11 Grover–Getting–Kennedy 4.06 1.72 3.14 2.29 4.08 3.64 2.81 1.26 0.35
12 Kunc–Loa–Syassen 4.17 1.31 3.21 1.76 3.03 3.97 2.06 1.36 0.35
13 Slater–Morse 4.10 1.47 3.23 1.89 3.51 3.91 2.48 1.42 0.34
14 Davydov 4.23 1.35 3.27 1.79 3.11 4.03 2.13 1.39 0.34
15 Bardeen 6.00 0.91 4.00 1.39 1.79 5.67 0.94 1.32 0.36
16 Shanker–Kushwah–Kumar 4.76 2.05 3.83 2.44 4.67 4.49 3.45 1.68 0.29
17 Rydberg 3.99 1.67 3.57 2.05 3.89 4.33 2.83 1.58 0.31
18 Brennan–Stacey 4.99 2.23 4.06 2.54 5.09 4.76 3.87 1.86 0.26
19 Dodson 9.37 3.77 7.31 3.72 7.55 9.10 6.05 3.08 0.10
20 Davis–Gordon 9.90 2.50 7.19 2.56 4.04 9.72 3.11 2.70 0.16
21 Poirier–Tarantola 10.9 3.43 8.15 3.31 6.19 10.7 4.99 3.23 0.11
22 Onat–Vaisnys 22.4 11.4 18.8 9.29 23.7 23.1 20.3 8.53 0.90
23 Lagrangian 26.9 14.7 23.0 11.7 31.4 28.0 27.1 10.7 1.28

Table 4. Percentage deviations in the fit values of B0 for the HPI from those of B0 for the LPI,
denoted by D1 in the text.

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy* 0.57 1.32 0.30 0.18 0.34 0.38 0.45 −0.13 −0.29
2 Bose Roy–Bose Roy −0.95 1.53 −0.74 0.94 0.26 0.98 0.29 −0.91 4.83
3 Born–Mie −1.23 1.28 −0.74 −0.68 0.30 −0.76 0.58 −0.52 5.33
4 Pack–Evans–James −1.61 1.06 −0.81 −1.09 0.11 −0.93 0.45 −0.52 5.29
5 Walzer–Ullmann–Pan’kov −3.22 0.60 −2.00 −1.50 0.00 −2.30 0.26 −1.05 4.75
6 Born–Mayer −3.41 −0.50 −2.45 −3.06 −1.09 −2.46 −0.61 −1.44 4.21
7 Birch–Murnaghan −4.26 0.88 −2.00 −1.23 −0.30 −3.01 0.10 −0.85 5.05
8 Deng–Yan −3.41 −0.50 −2.45 −3.06 −1.09 −2.46 −0.61 −1.44 4.21
9 Parsafar–Mason −2.46 −1.85 −1.78 −5.12 −3.43 −1.75 −2.52 −1.50 4.09

10 Holzapfel −5.64 −0.67 −3.78 −3.15 −0.82 −4.21 −0.39 −1.83 3.71
11 Grover–Getting–Kennedy −5.11 −1.75 −3.56 −5.09 −2.10 −3.60 −1.32 −1.83 3.63
12 Kunc–Loa–Syassen −6.24 −1.53 −4.38 −4.35 −1.58 −4.82 −1.06 −2.22 3.22
13 Slater–Morse −6.10 −1.89 −4.38 −4.86 −2.03 −4.71 −1.42 −2.35 3.09
14 Davydov −6.38 −1.64 −4.53 −4.50 −1.69 −4.93 −1.13 −2.29 3.18
15 Bardeen −10.2 −0.52 −5.94 −2.82 −0.34 −7.73 −0.03 −2.16 3.30
16 Shanker–Kushwah–Kumar −6.98 −2.95 −5.12 −6.45 −2.89 −5.20 −2.10 −2.68 2.55
17 Rydberg −6.97 −2.40 −5.05 −5.53 −2.40 −5.37 −1.71 −2.62 2.72
18 Brennan–Stacey −7.51 −3.54 −5.72 −7.16 −3.39 −5.75 −2.55 −3.08 2.13
19 Dodson −16.5 −7.19 −11.7 −12.4 −5.78 −12.8 −4.54 −5.31 −0.97
20 Davis–Gordon −19.2 −4.79 −12.4 −8.66 −2.82 −14.9 −2.23 −4.85 −0.42
21 Poirier–Tarantola −21.4 −7.05 −14.2 −12.1 −4.95 −16.6 −3.95 −5.84 −1.81
22 Onat–Vaisnys −50.1 −29.5 −36.9 −47.9 −26.0 −39.9 −21.0 −16.7 −18.4
23 Lagrangian −62.2 −39.7 −46.6 −65.7 −37.0 −49.8 −29.7 −21.3 −26.2
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Table 5. Percentage deviations in the fit values of B ′
0 for the HPI from those of B ′

0 for the LPI,
denoted by D2 in the text.

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy* −2.81 −10.1 −1.28 −6.46 −1.45 −1.65 −2.63 0.58 1.87
2 Bose Roy–Bose Roy 0.52 −3.95 0.20 −2.74 −0.54 0.97 −0.69 2.63 −9.07
3 Born–Mie 0.24 −4.51 −0.62 −1.53 −0.99 0.08 −1.60 1.34 −10.3
4 Pack–Evans–James 0.54 −4.20 −0.56 −0.97 −0.63 0.13 −1.34 1.24 −10.3
5 Walzer–Ullmann–Pan’kov 4.43 −2.99 2.55 0.36 −0.31 3.65 −0.92 3.09 −9.25
6 Born–Mayer 4.45 −0.41 3.34 3.76 1.95 3.71 1.11 4.17 −7.88
7 Birch–Murnaghan 7.20 −3.55 2.75 −0.24 0.23 5.61 −0.49 2.43 −10.1
8 Deng–Yan 4.06 −0.35 3.00 3.22 1.60 3.39 0.93 3.66 −7.07
9 Parsafar–Mason 2.80 2.16 1.90 6.87 5.33 2.31 4.42 4.15 −7.29

10 Holzapfel 9.69 0.14 7.00 4.38 1.44 8.18 0.71 5.78 −7.12
11 Grover–Getting–Kennedy 6.93 1.87 5.15 7.26 3.92 5.41 2.64 4.93 −6.84
12 Kunc–Loa–Syassen 11.2 2.35 8.61 7.25 3.24 9.52 2.35 7.09 −5.89
13 Slater–Morse 10.7 3.21 8.51 8.37 4.13 9.14 3.16 7.31 −5.54
14 Davydov 11.4 2.62 8.86 7.60 3.42 9.75 2.50 7.28 −5.73
15 Bardeen 25.0 −0.07 14.5 3.90 0.34 19.8 −0.28 7.48 −6.57
16 Shanker–Kushwah–Kumar 11.6 5.41 9.73 11.7 6.01 9.80 4.70 8.21 −4.44
17 Rydberg 12.7 4.53 10.2 10.1 4.95 10.8 3.93 8.36 −4.69
18 Brennan–Stacey 12.9 7.11 11.1 13.6 7.07 11.0 5.82 9.49 −3.30
19 Dodson 40.3 18.8 30.6 30.7 13.9 32.7 11.8 18.6 4.29
20 Davis–Gordon 60.5 13.8 39.1 23.0 7.42 47.4 6.26 19.0 3.60
21 Poirier–Tarantola 68.7 21.2 45.9 34.3 13.2 53.7 11.3 23.0 7.62
22 Onat–Vaisnys 281 136 182 276 93.6 195 76.5 79.4 68.8
23 Lagrangian 469 219 278 590 154 296 120 109 107

Table 6. Percentage deviations in the fit values of B0 for the HPI from those of B0 from experiment,
denoted by D3 in the text.

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy* 1.43 3.64 −1.46 −1.45 0.83 1.66 0.88 −1.99 0.15
2 Bose Roy–Bose Roy 0.00 4.61 −2.55 −0.26 0.94 0.28 1.01 −2.76 5.56
3 Born–Mie −0.29 4.39 −2.47 −1.80 1.21 0.50 1.49 −2.37 6.15
4 Pack–Evans–James −0.57 4.19 −2.55 −2.21 1.06 0.39 1.39 −2.31 6.15
5 Walzer–Ullmann–Pan’kov −2.39 3.65 −3.78 −2.64 0.83 −1.16 1.10 −2.88 5.39
6 Born–Mayer −2.58 2.48 −4.22 −4.24 −0.45 −1.33 0.06 −3.33 4.85
7 Birch–Murnaghan −3.44 3.95 −3.78 −2.38 0.49 −1.88 0.91 −2.69 5.68
8 Deng–Yan −2.58 2.48 −4.22 −4.24 −0.45 −1.33 0.06 −3.33 4.85
9 Parsafar-Mason −1.62 1.04 −3.57 −6.33 −3.39 −0.55 −2.30 −3.40 4.76

10 Holzapfel −4.88 2.28 −5.60 −4.33 −0.15 −3.21 0.29 −3.72 4.22
11 Grover–Getting–Kennedy −4.20 1.23 −5.31 −6.19 −1.43 −2.38 −0.62 −3.65 4.34
12 Kunc–Loa–Syassen −5.62 1.35 −6.26 −5.55 −1.09 −3.82 −0.52 −4.17 3.63
13 Slater–Morse −5.47 0.96 −6.26 −6.07 −1.62 −3.71 −0.94 −4.29 3.50
14 Davydov −5.75 1.23 −6.40 −5.69 −1.21 −3.93 −0.58 −4.23 3.59
15 Bardeen −9.73 2.41 −7.79 −4.01 0.45 −6.86 0.75 −4.10 3.63
16 Shanker–Kushwah–Kumar −6.27 −0.12 −6.99 −7.64 −2.53 −4.20 −1.62 −4.62 3.00
17 Rydberg −6.35 0.40 −6.91 −6.77 −2.07 −4.42 −1.30 −4.62 3.08
18 Brennan–Stacey −6.90 −0.80 −7.57 −8.40 −3.20 −4.81 −2.27 −5.06 2.45
19 Dodson −16.2 −4.68 −13.6 −13.7 −5.96 −12.2 −4.54 −7.37 −1.03
20 Davis–Gordon −19.1 −2.18 −14.3 −9.91 −2.60 −14.4 −1.91 −6.92 −0.61
21 Poirier–Tarantola −21.3 −4.60 −16.2 −13.3 −5.09 −16.2 −3.92 −7.95 −2.16
22 Onat–Vaisnys −50.7 −28.3 −38.8 −49.1 −28.6 −40.3 −23.2 −19.2 −20.1
23 Lagrangian −62.9 −39.0 −48.4 −66.6 −40.3 −50.3 −32.5 −24.0 −28.3
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Table 7. Percentage deviations in the fit values of B ′
0 for the HPI from those of B ′

0 from experiment,
denoted by D4 in the text.

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy* −4.41 −9.60 −6.38 −0.53 −3.08 −1.02 −1.80 −0.53 2.47
2 Bose Roy–Bose Roy −2.04 −11.4 −4.19 −2.81 −3.33 1.77 −2.15 1.88 −10.5
3 Born–Mie −2.62 −12.48 −5.28 −2.21 −5.38 0.55 −4.45 0.11 −12.2
4 Pack–Evans–James −2.86 −12.54 −5.62 −1.97 −5.38 0.09 −4.58 −0.40 −12.7
5 Walzer–Ullmann–Pan’kov 2.80 −10.5 −1.35 0.12 −4.13 5.45 −3.20 2.50 −10.0
6 Born–Mayer 2.66 −7.71 −0.53 4.11 −0.43 5.38 0.10 3.98 −8.53
7 Birch–Murnaghan 5.88 −11.3 −1.22 −0.60 −3.25 7.70 −2.60 1.59 −10.9
8 Deng–Yan 9.87 1.57 7.24 14.7 11.0 12.9 11.5 13.4 −0.23
9 Parsafar-Mason 0.81 −4.62 −2.04 8.51 7.18 3.74 6.90 4.42 −8.14

10 Holzapfel 9.48 −6.80 3.98 4.93 −1.18 11.5 −0.40 6.13 −6.50
11 Grover–Getting–Kennedy 4.14 −6.29 0.42 6.92 0.85 6.17 0.93 3.98 −8.38
12 Kunc–Loa–Syassen 11.5 −4.22 5.98 8.44 1.88 13.3 2.35 7.99 −4.72
13 Slater–Morse 10.9 −3.22 5.92 9.83 3.45 12.9 3.75 8.41 −4.32
14 Davydov 11.8 −3.90 6.30 8.85 2.18 13.7 2.63 8.25 −4.47
15 Bardeen 27.3 −6.95 12.4 4.30 −3.03 25.7 −2.03 8.08 −4.50
16 Shanker–Kushwah–Kumar 11.3 −1.33 6.78 13.0 5.33 13.1 5.25 9.09 −3.54
17 Rydberg 13.4 −1.63 7.96 11.9 4.90 15.2 5.10 9.82 −2.94
18 Brennan–Stacey 13.5 1.21 8.93 16.0 8.33 15.2 8.15 11.3 −1.45
19 Dodson 46.4 14.3 31.3 35.3 18.2 42.6 16.9 22.8 10.5
20 Davis–Gordon 71.0 9.19 41.2 26.5 8.25 61.3 8.60 23.3 11.4
21 Poirier–Tarantola 81.6 17.8 49.4 39.8 17.4 69.7 16.6 28.8 17.2
22 Onat–Vaisnys 367 159 222 338 158 268 131 110 115
23 Lagrangian 634 268 350 743 278 418 217 157 181

of magnitude. With similar exercises for all the EOSs considered, we thus have a table in which
the deviation points are spread over nine columns following the column of EOSs. One might
immediately suggest, following a traditional path, that the magnitude of the DPs in the ninth
column may be chosen as a marker to scale the adequacy of the EOSs. To elaborate, the EOS
with the lowest relative mismatch, i.e. with the lowest magnitude of Di in the ninth column may
be credited with an integer 1, and the EOSs with successively higher numerical values of the
Di /RMSD may be discredited with successively higher integers, increasing by unity. It may be
emphasized here that the numerical values assigned to the EOSs merely denote their adequacy
on a relative scale—the higher the numerical values the lower the adequacy. However, the
crux of the problem of this one-step CIA is that the D′

i s are not in general consistent in their
magnitude. This non-uniformity factor may be appreciated by focusing attention on the D1s in
the first row of table 4, where as many as seven deviation points remain well within 0.5, while
the ninth (the largest one) jumps to as much as 1.32. Similarly, turning to the D2s in the first
row of table 5, while as many as seven D2s remain within 3; the ninth, the largest, jumps to
as high as 10.1. Obviously, using the largest value as a marker is quite unlikely to yield an
infallible inference. To resolve this problem, we have to follow a path that must be unbiased
and at the same must be capable of incorporating the inconsistency features of the deviation
points. Further, it must be pointed out that statistically we have to consider at least five out of
the nine deviation points for each EOS. To this end, therefore, we have considered the deviation
points in columns 5, 6, 7, 8 and 9, separately. The EOSs are marked with integers depending
on the relative magnitude of the deviation points in columns 5 to 9, separately. Each EOS thus
has a set of five integers, denoting its relative adequacy corresponding to each column. These
integers are summed up and then averaged over five columns by dividing by 5, and the average
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Table 8. Number of wiggles of the data deviation curves about the fits (NW).

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl RA

1 Bose Roy–Bose Roy* 15 11 24 13 12 17 11 24 17 1
2 Bose Roy–Bose Roy 2 2 5 2 12 2 9 5 2 2
3 Born–Mie 2 5 3 2 7 2 5 7 2 3
4 Pack–Evans–James 2 5 3 2 5 2 5 7 2 4
5 Walzer–Ullmann–Pan’kov 2 9 2 2 5 2 5 5 2 5
6 Birch–Murnaghan 2 5 2 2 4 2 5 5 2 6
7 Bardeen 2 6 2 2 6 2 2 2 2 7
8 Born–Mayer 2 6 2 2 2 2 2 5 2 8
9 Deng–Yan 2 6 2 2 2 2 2 5 2 8

10 Holzapfel 2 4 2 2 4 2 4 2 2 9
11 Dodson 2 2 2 2 2 2 2 2 13 10
12 Poirier–Tarantola 2 2 2 2 2 2 2 2 13 10
13 Davis–Gordon 2 2 2 2 2 2 2 2 9 11
14 Kunc–Loa–Syassen 2 2 2 2 2 2 2 2 2 12
15 Slater–Morse 2 2 2 2 2 2 2 2 2 12
16 Parsafar–Mason 2 2 2 2 2 2 2 2 2 12
17 Rydberg 2 2 2 2 2 2 2 2 2 12
18 Davydov 2 2 2 2 2 2 2 2 2 12
19 Grover–Getting–Kennedy 2 2 2 2 2 2 2 2 2 12
20 Shanker–Kushwah–Kumar 2 2 2 2 2 2 2 2 2 12
21 Brennan–Stacey 2 2 2 2 2 2 2 2 2 12
22 Onat–Vaisnys 2 2 2 2 2 2 2 2 2 12
23 Lagrangian 2 2 2 2 2 2 2 2 2 12

numerical values are then again marked with integers, to denote the overall relative adequacy
against the test parameter. It will be interesting to note that if we consider all the nine columns
separately we arrive at the same overall relative adequacy of the EOSs as obtained considering
only five columns in line with the CIA, shown in table 12.

In the second approach, called the individual isotherm approach (IIA), the responses of
the EOSs towards the individual isotherms is incorporated in scaling their relative adequacy.
In the IIA, the EOSs are marked with integers depending on the relative magnitude of the DPs
against each isotherm. For each EOS, nine integers thus obtained for the nine isotherms are
added and averaged over nine isotherms, and the average numerical values are again changed
to integers denoting the relative adequacy of the EOSs, as discussed above. In principle, if
the deviation points inferred from an EOS for all the isotherms are equal in magnitude, the
two approaches CI and II lead to the concurrent conclusions, irrespective of the number of
isotherms considered. In practice, however, if the DPs inferred from an EOS are appreciably
consistent when considered on an overall basis, the two approaches would have an increasing
tendency to yield similar inferences as the number of isotherms considered increases. Tables 9
and 10 illustrate the two approaches with reference to the assessment of the relative adequacy
of the EOSs for D1.

3.2. Departure of the data deviation plot from the normal error curve and adequacy of EOS

As dealt with at length in our previous study [14], the curve-fitting capability of the EOSs
can be compared on the basis of the departure of the data deviation curves from the ideal
normal random variable curve. In general, the higher the number of wiggles of the data
deviation curves about the fits, the higher is the relative adequacy of an EOS. If two EOSs differ
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Table 9. Individual isotherm approach (IIA) illustrated with reference to the adequacy of D1. RA
denotes relative adequacy.

2-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl Av. RA

1 Bose Roy–Bose Roy* 1 8 1 1 7 1 7 1 1 3.11 1
2 Bose Roy–Bose Roy 2 9 3 3 3 4 4 5 17 5.56 2
3 Born–Mie 3 7 2 2 4 2 8 3 20 5.67 3
4 Pack–Evans–James 4 6 4 4 2 3 6 2 19 5.56 2
5 Walzer–Ullmann–Pan’kov 6 3 8 6 1 6 3 6 16 6.11 4
6 Born–Mayer 7 1 9 8 9 7 9 7 15 8 6
7 Birch–Murnaghan 8 5 8 5 5 8 2 4 18 7 5
8 Deng–Yan 7 1 9 8 9 7 9 7 15 8 6
9 Parsafar–Mason 5 13 5 14 18 5 17 8 14 11 10

10 Holzapfel 10 4 11 9 8 10 5 10 13 8.89 7
11 Grover–Getting–Kennedy 9 12 10 13 13 9 12 9 12 11 10
12 Kunc–Loa–Syassen 12 10 12 10 10 12 10 12 10 10.89 9
13 Slater–Morse 11 14 12 12 12 11 13 14 8 11.89 12
14 Davydov 13 11 13 11 11 13 11 13 9 11.67 11
15 Bardeen 17 2 16 7 6 17 1 11 11 9.78 8
16 Shanker–Kushwah–Kumar 15 16 15 16 16 14 15 16 6 14.33 14
17 Rydberg 14 15 14 15 14 15 14 15 7 13.67 13
18 Brennan–Stacey 16 17 16 17 17 16 18 17 5 15.44 15
19 Dodson 18 20 18 20 20 18 20 19 3 17.33 17
20 Davis–Gordon 19 18 19 18 15 19 16 18 2 16.00 16
21 Poirier–Tarantola 20 19 20 19 19 20 19 20 4 17.78 18
22 Onat–Vaisnys 21 21 21 21 21 21 21 21 21 21 19
23 Lagrangian 22 22 22 22 22 22 22 22 22 22 20

significantly from each other with regard to their curve-fitting capability, it would be manifest
in the significant difference in the number of the wiggles (NW) of their data deviation curves.
If, however, the difference is not very significant, or marginal, the same may be reflected in the
marginal difference in the number of wiggles; or merely in the degree of departures of their
data deviation curves from the symmetric normal random distribution pattern, and an explicit
difference in the number of wiggles may not be registered. In order to assess any significant
difference in the fitting capability of the compared EOSs, we have plotted the deviation in the
response, P , against the regressor, V/V0, inferred from all the EOSs for all the nine isotherms
considered, and counted the number of times the data deviation curves cross the fit. The
enumerated numerical values are tabulated in table 8. It may be noted that the numerical values
of NW are so arranged that, on an overall basis, in any row the number of isotherms, for which
a higher number of wiggles is inferred from an EOS, is higher than those that follow down the
table.

Table 8 shows that for all the nine isotherms considered there is a wide difference between
the number of wiggles (NW) inferred from our three-parameter EOS, and the rest of the 21
two-parameter EOSs compared. It is important to note that even our two-parameter EOS is
overall better randomized compared to the other two-parameter EOSs.

3.3. Results and discussions

Table 12, in conjunction with tables 3–8 and 11 depicts the overall position of the EOSs with
regard to their relative curve-fitting capability. In table 12, the relative performance of the
individual EOSs against the six tests—the fitting accuracy, stability of the fit parameters B0 and
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Table 10. Collective isotherm approach (CIA) illustrated with reference to the adequacy of D1. A,
B, C, D and E denote the fifth, sixth, seventh, eighth and ninth columns, respectively, as referred to
in the text.

2-parameter EOS A B C D E Av. RA

1 Bose Roy–Bose Roy* 1 1 1 1 1 1 1
2 Bose Roy–Bose Roy 4 3 2 3 4 3.2 2
3 Born–Mie 2 2 4 2 9 3.8 3
4 Pack–Evans–James 3 4 3 4 8 4.4 4
5 Walzer–Ullmann–Pan’kov 6 5 5 5 3 4.8 5
6 Born–Mayer 6 5 5 5 3 4.8 5
7 Birch–Murnaghan 5 5 6 9 5 6 7
8 Deng–Yan 7 6 7 6 2 5.6 6
9 Parsafar–Mason 8 7 8 7 7 7.4 8

10 Holzapfel 13 10 10 8 10 10.2 9
11 Grover–Getting–Kennedy 17 9 9 13 6 10.8 10
12 Kunc–Loa–Syassen 15 11 11 10 12 11.8 11
13 Slater–Morse 12 12 13 11 11 11.8 11
14 Davydov 14 13 12 12 13 12.8 12
15 Bardeen 10 8 17 17 17 13.8 14
16 Shanker–Kushwah–Kumar 11 15 14 15 15 14 15
17 Rydberg 9 14 15 14 14 13.2 13
18 Brennan–Stacey 16 16 16 16 16 16 16
19 Dodson 20 18 18 18 18 18.4 18
20 Davis–Gordon 18 17 18 19 19 18.2 17
21 Poirier–Tarantola 19 19 19 20 20 19.4 19
22 Onat–Vaisnys 21 20 20 21 21 20.6 20
23 Lagrangian 22 21 21 22 22 21.6 21

B ′
0, agreement of the fit parameters B0, and B ′

0 with experiment, and randomization of the data
points about the fits (NW)—is expressed in terms of the numerical values denoting their relative
adequacy with reference to their individual responses to the said tests in tables 3–8, taking
recourse to both the individual and collective isotherm approaches. It must be emphasized
that these numerical values do not constitute any quantitative scale. They simply indicate
that the higher the numerical value, the lower is the rating against the tests specified at the
column heads, on a relative scale. One can note in tables 3–8 that our three-parameter model
(equation (33)) is, in general, superior to the nearest rival, which interestingly happens to be
our two-parameter EOS (equation (34)), on all the six tests—but the difference between the
successive EOSs, down the tables, increases slowly thereafter, and the worst ones appear at the
bottom of the table. It must be emphasized here that all the six tests are highly correlated, and
none of them alone is sufficient to assess the adequacy of an EOS.

Table 12 shows clearly that the overall positions of relative adequacy suggested by the
two approaches, CIA and CIIA, accord well for the best seven EOSs, down to the Birch
EOS; implying thereby that the number of isotherms considered for comparison purposes is
adequate, statistically, for a meaningful discrimination between the EOSs. Good consistency
however, should not be misconstrued as a measure of good adequacy—to illustrate this the two
approaches concur even for the worst three EOSs at the bottom of the table. Relative adequacy
inferred from the two approaches is in conflict for the pair of EOSs like the Slater–Morse and
the Davydov, the Shanker–Kushwah–Kumar and the Rydberg and the Dodson and the Davis–
Gordon. As such, we cannot argue that either one or the other of these pairs of EOSs fits the
isotherms better.
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Table 11. Overall relative adequacy (ORA) of the EOSs based on their relative performances
against the six tests as shown in tables 3–8, using the individual isotherm approach.

2-parameter EOS RMSD D1 D2 D3 D4 NW ORA

1 Bose Roy–Bose Roy* 1 1 4 1 2 1 1
2 Bose Roy–Bose Roy 2 2 1 2 5 2 2
3 Born–Mie 3 3 3 5 9 3 3
4 Pack–Evans–James 4 2 2 4 11 4 4
5 Walzer–Ullmann–Pan’kov 5 4 3 7 6 5 5
6 Born–Mayer 7 6 6 3 1 8 6
7 Birch–Murnaghan 6 5 5 8 7 6 7
8 Holzapfel 8 7 7 6 4 9 8
9 Deng–Yan 9 6 4 3 17 8 9

10 Grover–Getting–Kennedy 14 10 10 9 3 12 10
11 Bardeen 10 8 9 14 14 7 11
12 Kunc–Loa–Syassen 11 9 11 10 10 12 12
13 Parsafar–Mason 15 10 8 11 8 12 13
14 Davydov 13 11 12 12 13 12 14
15 Slater–Morse 12 12 13 13 12 12 15
16 Rydberg 10 13 14 15 16 12 16
17 Shanker–Kushwah–Kumar 16 14 15 16 15 12 17
18 Brennan–Stacey 17 15 16 17 18 12 18
19 Davis–Gordon 18 16 17 18 19 11 19
20 Dodson 19 17 18 19 20 10 20
21 Poirier–Tarantola 20 18 19 20 21 10 21
22 Onat–Vaisnys 21 19 20 21 22 12 22
23 Lagrangian 22 20 21 22 23 12 23

Our three-parameter EOS best fits the data curves; and more importantly, since its two-
parameter counterpart generally duplicates the data curves better than all the two-parameter
EOSs considered, asserts the robustness of our original three-parameter model. The most
noticeable feature of the results in table 12, however, is that the old quantum-based Pack–
Evans–James model, which now is virtually lost to oblivion, not attracting even a passing
mention in the current literature, as well as the old lattice-potential based Born–Mie EOS,
do fit the isotherms significantly better than the Birch–Murnaghan EOS. Hence the use of the
Birch EOS as a standard EOS in the literature in curve-fitting purposes, for over half a century
now—especially when EOSs with a decisively higher fitting accuracy already existed—is not
justified.

The EOS model of Deng and Yan (equation (31)), based on the Born–Mayer model, has
proved counterproductive in that the original Born–Mayer EOS fits the data curves better than
their model. Similarly, the Shanker–Kushwah–Kumar EOS which is based on a combined form
of an inverse power dependence (Born–Mie EOS) and exponential dependence (Born–Mayer
EOS), is also counterproductive—because both the Born–Mie and the Born–Mayer EOSs are in
significantly better agreement with the compression curves than the Shanker–Kushwah–Kumar
EOS.

In sharp contrast with the assertion of Oganov et al [103], and in line with the conclusions
of Schlosser et al [104], Cohen et al [105] and Hama et al [106] that the Rydberg EOS is the
best EOS formulation available, giving the best fit of experimental data over the full range of
compressions experimentally available, one can appreciate from table 12 (and tables 3–8) that
this conclusion is far from truth insofar as the accuracy in curve-fitting capability is considered.
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Table 12. Overall relative adequacy (ORA) of the EOSs based on their relative performances
against the six tests as shown in tables 3–8, using the collective isotherm approach.

ORA ORA
2-parameter EOS RMSD D1 D2 D3 D4 NW (CIA) (IIA)

1 Bose Roy–Bose Roy* 1 1 1 1 1 1 1 1
2 Bose Roy–Bose Roy 2 2 6 2 3 2 2 2
3 Born–Mie 3 3 4 3 8 3 3 3
4 Pack–Evans–James 5 4 2 2 9 4 4 4
5 Walzer–Ullmann–Pan’kov 4 5 5 4 4 5 5 5
6 Born–Mayer 7 6 7 5 2 8 6 6
7 Birch–Murnaghan 6 7 9 6 7 6 7 7
8 Deng–Yan 7 6 3 5 16 8 8 9
9 Parsafar-Mason 10 8 8 7 6 12 9 13

10 Holzapfel 8 9 11 8 9 9 10 8
11 Grover–Getting–Kennedy 13 10 10 9 5 12 11 10
12 Kunc–Loa–Syassen 9 11 12 10 10 12 12 12
13 Slater–Morse 11 11 13 11 11 12 13 15
14 Davydov 12 12 14 12 12 12 14 14
15 Bardeen 14 14 16 13 14 7 15 11
16 Shanker–Kushwah–Kumar 16 15 15 14 13 12 16 17
17 Rydberg 15 13 17 14 15 12 17 16
18 Brennan–Stacey 17 16 18 15 17 12 18 18
19 Dodson 19 18 19 16 18 10 19 20
20 Davis–Gordon 18 17 20 17 19 11 20 19
21 Poirier–Tarantola 20 19 21 18 20 10 21 21
22 Onat–Vaisnys 21 20 22 19 21 12 22 22
23 Lagrangian 22 21 23 20 22 12 23 23

Because the position of the Rydberg EOS, on the scale of relative curve-fitting adequacy, is
as low as 17, and as many as nine two-parameter EOSs had already appeared in the literature
much before the Rydberg. Further, both the two- and three-parameter Rydberg EOSs prove an
utter failure in duplicating Nellis et al’s data curve of Cu [89] ranging to the terapascal regime.
The Rydberg EOS has currently attracted undue attention because of the claim of Vinet and
co-workers that it is a universal EOS. In fact any proposal to project the two-parameter Rydberg
EOS as a universal one represents a lack of knowledge or a lack of attention to the experimental
facts [107, 108].

The claim of Parsafar and Mason, that their EOS describes the data curve more accurately
than the Rydberg EOS, is well substantiated on experimental grounds. One notes from table 12
that among the two-parameter EOSs compared, the Parsafar and Mason EOS ranks eighth on
the scale of relative adequacy, (table 12) as compared to sixteenth for the latter. The Holzapfel
EOS, resulting from the grafting of the Thomas–Fermi limiting condition into the Rydberg
EOS, does exhibit a decisive superiority in curve-fitting compared to the Rydberg EOS, on all
the six counts of the composite test. The adequacy of the Kunc–Loa–Syassen EOS, as expected,
lies between those of the Holzapfel and the Rydberg EOS, of which it is a hybrid.

The Morse potential continues to be widely used in theoretical thermodynamic studies of
solids [109–113] unlike the Rydberg potential—although the latter was considered better in
the explanation of diatomic spectra. And interestingly, the Slater–Morse EOS proves better
in curve-fitting than the Rydberg EOS. The apparent poor performance of the Bardeen EOS,
based on quantum-mechanical calculations, is understandable. In principle, the limitations
on accuracy in the quantum-mechanical calculations of an equation of state are set only
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by mathematical complications in the solution of Schrödinger’s equation for the many-body
problem. And the original derivation of this equation from quantum mechanics applies
specifically to alkali metals. The poor performance of the Brennan–Stacey EOS, apparently
based on a clear thermodynamic argument, has its genesis in the facts that both the free
volume formula and the assumption γρ = constant are flawed; the authors realizing these
inadequacies in their later study, based on molecular dynamics [114, 115]. And as such,
equation (25) should be viewed merely as an empirical model. The discouraging performance
of the Dodson equation, seemingly based on well-founded theoretical observations of Moruzzi
et al, is probably due to its origin anchored in presumptions that have no physical significance
as the rough model of Moruzzi et al for electron density versus bulk compressibility has been
used far outside its regime of applicability [61]. The Lagrangian EOS as well as the Davis–
Gordon and the Onat–Vaisnys EOSs do not fit the data curves well because of their poor
convergence. The Lagrangian EOS, positioned at the lowest position of the scale of relative
adequacy, allows an easy appreciation of the relative accuracy achieved by the rest of the EOSs
compared. The argument underlying the formulation of the Poirier–Tarantola EOS is appealing
and compelling [80]. But it flounders on the test bed of experiment, appearing in table 12 along
with the worst performers. Thus the Poirier and Tarantola EOS best illustrates the dictum that
the real test of the adequacy of an EOS is its agreement with experiment, i.e. nature, and not
the apparent appeal of its underlying argument.

Figures 1(a)–7(c) compare and examine the deviations between the data points and data fits
with various equations, and reinforce our earlier conclusions based on numerical results. One
important feature, which is conspicuous in all the graphs, is that the fits yielded by equation (33)
result in a very accurate representation of the data. The magnitude of systematic deviations
at low pressure is appreciably low—a characteristic of a well-behaved EOS that helps in the
extraction of accurate values of fit parameters [116], and is much lower than those arising
from all the other EOSs. And randomization of the data points about the fits is also decisively
better—the deviation curves hovering closely around the fits, over the entire pressure range. In
general, the deviation curves for equation (34) follow those for equation (33) more closely than
the rest of the EOSs. Overall, the graphs show that the difference in the curve-fitting capability
between the EOSs (33) and (34), is not as pronounced as the difference between them and the
rest of the EOS models.

A few comments may be made with regard to the status of the Birch–Murnaghan
model, used as a standard EOS in the field of EOS. The Birch EOS is neither unique
nor exact; neither its physical behaviour is impeccable nor its theoretical bases above
criticism [37, 39, 40, 106, 117–121]. Further, neither is acceptable for the accurate
representation of the high-precision low-compression data [116], nor are its two- and three-
parameter EOS forms in accurate agreement with the ultra-high-pressure model-independent
compression regime [89]. Additionally, neither is it compatible with the recent theoretical
study [122], nor is its curve-fitting capability the best compared to the rest of the then existing
EOSs (table 12). Yet it has been widely used for curve-fitting purposes for over a half a century
now [4, 5, 123, 124]—Why? It is probably because Birch pioneered the interpretation of
seismological observations of the deep Earth. The apparent success being attributed to the
in-built constraint of its relation, giving in its simplest form B ′

0 = 4, which happens to be
a good average for many minerals studied. The Birch analysis was so persuasive that most
geophysicists have followed his lead without contemplating alternative approaches. However,
the present study indicates unambiguously that two viable alternative EOSs, the Born–Mie and
the Pack–Evans–James, with a significantly better accuracy in curve-fitting, already existed.
And therefore, the use of the Birch relation for the curve-fitting of the compression data cannot
be justified either in the present or in the past.
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Figure 1. (a)–(c). Comparison of deviations
between the data curve of Ag [86] and the
fits from Bose Roy–Bose Roy*, and the other
equations of state.

4. Summary

The EOS discrimination technique is rendered more stringent in the present study. Following an
unbiased discrimination technique—the harshest ever designed and applied in the literature—
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Figure 2. (a)–(c). Comparison of deviations between the data curve of Cu [86] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.

the curve-fitting capability of as many as 21 isothermal unrealistic two-parameter EOSs has
been assessed on an individual as well as a comparative basis—and compared with our realistic
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Figure 3. (a)–(c). Comparison of deviations between the data curve of Mg [86] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.

three- and two-parameter EOSs. It is shown that there is no justification whatsoever in the use
of the Birch–Murnaghan EOS and the Rydberg EOS in the curve-fitting of the compression
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Figure 4. (a)–(c). Comparison of deviations between the data curve of Mo [88] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.

data. The Birch–Murnaghan approach, which continues to be unjustifiably used for over a
half a century now in the curve-fitting of the laboratory compression data, must be judged not
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Figure 5. (a)–(c). Comparison of deviations between the data curve of Pd [86] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.

by its pedigree but by the accuracy of its response to observations, as for any other empirical
relationship. Likewise, the current use of the Rydberg EOS—with a much poorer performance
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Figure 6. (a)–(c). Comparison of deviations between the data curve of W [88] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.

compared to the Birch EOS—as a standard EOS in the curve-fitting exercises, is also unfounded
on experimental grounds. Conflicting conclusions, widespread in the literature, regarding the
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Figure 7. (a)–(c). Comparison of deviations between the data curve of MgO [86] and the fits from
Bose Roy–Bose Roy*, and the other equations of state.
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relative curve-fitting utility of the isothermal unrealistic two-parameter EOSs, arising from
an inappropriate and inadequate methods used for EOS discrimination, are set to rest. On
an overall assay, it transpires that in general the curve-fitting predictions based on the two-
parameter EOSs are fraught with a higher level of uncertainty compared to the three-parameter
ones. Further, it is shown that the overall curve-fitting capability of our two-parameter EOS
is superior to all the unrealistic two-parameter EOSs considered. To conclude, our three-
parameter EOS is decisively superior not only to all the three-parameter EOSs but also to all
the unrealistic two-parameter EOSs thus far proposed in the literature.
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