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The construction of this introduction results from the first paragraph.
Here, some essential papers of other authors are reviewed. The main sources
of the internal heating of the Earth stem from the transformation of kinetic
energy of the parential bodies into heat during accretion (Safronov, 1972)
and from the decay of radioactive elements with long half-life periods. Spohn
and Schubert (1991) demonstrated that, after an early impact of a Mars-sized
body, the Earth needs 1-10 Ma to come to equilibrium. Using such a starting
point, Schubert et al. (1979, 1980) calculated the thermal evolution in a
parameterized model where, from the integration of the energy conservation
in the Earth’s mantle, it follows that

Mc
∂Ta
∂t

= MH0e
−λt −Aq (1)

whereM is the mass of the mantle, c the specific heat, Ta the volume-averaged
temperature of the mantle, H0 the specific radiogenic heat generation rate at
the beginning of mantle evolution, λ a unified rate constant, A the magnitude
of the Earth’s surface and q the mean mantle heat flow at the surface. Ac-
cording to the presumed heating mode, different Nu-Ra relations are used in
these and the subsequently mentioned papers. Christensen (1984, 1985) stud-
ied the influence of a strongly temperature-dependent viscosity on thermal
convection. Dependent on the assumed degree of temperature dependence of
the viscosity, Christensen (1985), Solomatov (1995) and Reese et al. (1999)
arrived at three different convection modes, a first regime with low temper-
ature influence and movable upper boundary layer, the sluggish-lid regime
and the stagnant-lid regime. For each regime, a different Nu-Ra relation has
been derived.

Our evolution model of the mantle is a convective spherical-shell model,
since the balance equations of energy, momentum and mass and later on also
the balance equations of the sums of the number of the atoms of radioactive
parent nuclides and the corresponding radiogenic daughter nuclides can be
more realistically formulated for a spherical shell. Furthermore, the compress-
ibility and associated effects such as viscous heating and adiabatic heating
are relevant for the larger terrestrial planets (Earth, Venus). Therefore, these
effects are taken into account in our model. For that reason, some papers of
other authors are discussed here which show similar features. Bercovici et al.
(1992) calculated compressible-fluid convection using the anelastic liquid ap-
proximation (ALA). The material parameters are supposed to be constants,
expect the density ρ(r). So, also the viscosity, η, is constant. The superadia-
batic temperature difference, ∆Tsa, between the upper and the lower surface
of the spherical shell is kept constant, too. The model has no internal heating.
Tbot is the temperature at the lower surface, Di is the dissipation number,
Raa is the Rayleigh number.

Raa =
〈

ραgh3∆Tsa/ηκ
〉

(2)
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where α is the coefficient of thermal expansion, g gravity, h the depth of the
mantle and κ the thermal diffusivity. 〈〉 denotes the volume-averaged value.
In order to investigate compressibility effects, Raa, Di and T bot/∆Tsa have
been systematically varied. The thickness of the upper stagnant layer grows
with rising T bot/∆Tsa. The model by Zhang and Yuen (1996) is somewhat
more complex and resembles more to the mantle. ALA is used, too, but
additionally the assumption

α̃/γ̃ = ρ̃−2
ref (3)

where the curly overbar denotes non-dimensional quantities; γ is the Gruen-
eisen parameter and ρref is a depth-dependent reference density using the

Adams-Williamson equation. α̃, ρ̃ref , the thermal conductivity, k̃, and the

reference temperature, T̃ref , are weakly depth-dependent, η̃ is moderately
depth-dependent. The number and the strength of plumes and subducting
zones strongly depend on the depth dependence of the viscosity. Using other
viscosity-depth relations, we can corroborate this experience. Viscous dissi-
pation is maximum near the upper and lower surface of the spherical shell.
Zhang and Yuen (1996) concluded that adiabatic and viscous heating in-
crease each other in downwellings whereas viscous heating retards adiabatic
cooling in plumes. For incompressible convection, this asymmetry causes a
rising temperature in the interior of the shell.

2 Our model

In this paper, we investigate the effects of a systematic variation of non-
dimensional parameters on our model. On the one hand, we used non-dimen-
sional numbers which are fixed for one run, namely the Rayleigh numbers,
Ra(1) and Ra(2), the Nusselt numbers, Nu(1) and Nu(2), the reciprocal val-
ues of the Urey numbers, Ror(1) and Ror(2), and a non-dimensional number,
rn, which characterizes the level of the viscosity profile. Below, these num-
bers will be defined. On the other hand, there are also time-dependent non-
dimensional quantities, Ra(t), Nu(t) and Ror(t), since the Earth’s mantle as
well as our model irreversibly evolve.

We calculate the thermal convection in a spherical shell with a ratio of the
radii as in the Earth’s mantle according to PREM, with an infinite Prandtl
number, with impermeable free-slip boundaries, with a spatially homoge-
neous internal heating, subsiding as a function of time. The abundances of
238U, 235U, 232Th and 40K of the bulk silicate Earth are taken from McCul-
loch and Bennett (1994). These abundances deviate only slightly from those
of the primitive mantle according to Hofmann (1988). The decay of the heat
generation is an essential feature of the evolution of the mantle and must
not be neglected. The primordial heat of the mantle is introduced by an init-
ial adiabatic temperature distribution which is 3900 K at the core-mantle
boundary (CMB) in our model. The upper surface temperature is thought to
be constant at 288 K, constant with respect to time and space. Even if only



4

the primordial heat would exist, the thermal history of the mantle would be a
decline in temperature. Radioactive decay, heat conduction and viscous dis-
sipation are irreversible processes. Therefore, neither in this relatively simple
model nor in the real mantle, steady states will occur during the consid-
ered time span of evolution. The non-dimensional numbers mentioned at the
beginning make us independent of the details of the dimensional quantities
which can be found in Walzer et al. (2002a). Furthermore, the model is com-
pressible and takes into account the adiabatic and viscous heating. There
are no continents in the model. So, the boundary conditions at the upper
surface are equal everywhere. Moreover, the model does not contain chemical
differentiation (Walzer and Hendel, 1999; Ogawa, 2000; DeSmet et al., 2000)
and convective mixing of chemical reservoirs (Schmalzl, 1996). Similar to the
model of Zhang and Yuen (1996), our method contains some quantities which
weakly depend on the radius, r: The Figs. 1 and 2 by Walzer et al. (2002a)
show the pressure, P , the reference density, ρref , the bulk modulus, K, the
Grueneisen parameter, γ, the thermal expansion coefficient, α, the specific
heat at constant pressure, cp, and the specific heat at constant volume, cv, as
a function of the radius, r. The coefficient α stems from Chopelas and Boehler
(1992) and some related papers wheras the rest of the quantities have been
derived from PREM and some usual solid-state physics formulae. The ther-
mal conductivity, k, of the model is identical with that of Bercovici et al.
(1992). A number of viscosity distributions is essential for the model. The
P, T -dependence of the viscosity as well as the mineralogical phase bound-
aries at 410 and 660 km depth are reflected in these distributions. The basic
distribution of the viscosity, η, results from

η(r) = 10rn · η1(r) · exp

[

c1
Tav/T00 + 1

−
c1
2

]

(4)

for rn = 0 where η1(r) is shown by Fig.1 and derived by Walzer and Hendel
(2002) and Walzer et al. (2002a) using the seismological model PREM and
solid-state physics.

The overall features of η1(r) show a certain resemblance with the vis-
cosity profile according to Forte and Mitrovica (2002, their Fig. 2) and Ek-
ström and Dziewonski (1998) although that profile has been derived by a
totally different method. The latter method used density anomalies in the
mantle and a simplified distribution of observed plate velocities given by the
NUVEL–1 model. The mentioned density anomalies are derived from the
observed shear-velocity anomalies and the observed free-air gravity anoma-
lies which are calculated using the non-hydrostatic geopotential derived from
satellite data.

The quantity rn in Eq. (4) denotes a non-dimensional real number which
characterizes the general level of the viscosity profile. In the third factor of Eq.
(4), c1 = 9.2103, T00 = 1500K and Tav is the laterally averaged temperature
(in Kelvin) which is a function of the time, t, too. So, it is guaranteed that
the temperature-dependent factor of the viscosity varies only in a range of
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Fig. 1: Basic viscosity, η1(r), of the mantle as a function of depth, according to
Walzer et al. (2002a).

four orders of magnitude. This assumption does not essentially distort the
physics of the problem but, so, numerical problems are avoided.

Using our model, we want to calculate the last 4990Ma of the thermal
evolution of the mantle. This is the time after the formation of the Earth’s
core. So, not only some 100 Ma are relevant for our considerations.

a) It is an essential feature of the evolution of the Earth, that its direction

is defined by irreversible processes, especially that the heat generation rate
per volume, Q, decreases with time and that the Earth cools down, i.e. that
the volume-averaged temperature, Ta, diminishes. The latter process would
happen also if the internal heating would take place only at the beginning
by accretion. From investigations of komatiites, it is well known that the
temperature of the upper part of the mantle grows less by about 100K per
109 a.

b) From geochemistry, it is well-known that the radioactive elements are
concentrated mainly in the silicate shell but not in the metallic Earth’s core.
From this it can be concluded that the mantle is mainly heated from within
and, only to a minor degree, from below.

From a) and b) it follows that it is totally improbable that the laterally

averaged CMB temperature, TCMB,av, is a constant with respect to time. That
has nothing to do with the fact that TCMB should not depend on the location
vector since the outer core is a metallic liquid. In spite of this consideration,
convection investigations assuming a TCMB which is constant with respect to
time lead to good results if the considered time span is only some 100Ma.
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In Section 6.7.5, entitled Constancy of the Core-to-Mantle Heat Flux, Stacey
(1992) shows that it is a better approximation for evolution models to assume
a constant heat flow at CMB. Additional arguments are given by Walzer and
Hendel (1999) in Appendix A. In the present model qCMB = 28.9mWm−2

is assumed using a result by Anderson (1998). Because of the paragraphs a)
and b), the Rayleigh number

Ra =

〈

ραgh3

κηal
·
(Qh+ qCMB)h

k

〉

(5)

is better adapted to the problem than

RaB =

〈

ραgh3

κηal

〉

·∆T (6)

The bracket 〈〉 denotes a volume average but not a temporal average. The
temperature difference,∆T = TCMB−Tob, is no constant for the present prob-
lem, Tob being the constant upper-surface temperature. The heat generation
rate per volume, Q, is given by

Q = ρ

4
∑

ν=1

aµν aifν H0ν exp (−t/τν) (7)

where aµν is the abundance of the heat-producing elements, aifν the isotopic
abundance factor, H0ν the specific heat generation per unit time, 4.49×109 a
ago, τν the 1/e life of the corresponding nuclide and ν the consecutive index
of the mentioned four radionuclides.

The quantity Q is monotonously declining as a function of time and also
ηal is a function of the time since the cooling of the Earth (see paragraph
a)) is an essential feature of the Earth’s evolution and because of Eq. (4).
Therefore, Ra is a function of time. In the main part of the time, Ra is
growing less. So, steady-state models with constant Ra are not adequate to
the problem. The definition

log ηal = 〈log η〉 (8)

has been used since the high values of η would dominate in a simple volume-
proportional average.

3 Quantification of the model results. Non-dimensional

numbers.Variation of the parameters. Conclusions.

Fig. 2 presents the temperature distribution and the creeping velocities on an
equal-area projection, with constant radius, for the exponent rn = 0. Similar
distributions have been computed for different radii (or depths in the mantle)
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Fig. 2: Colors represent the temperature, arrows stand for the creeping velocities on
an equal-area projection in 134.8 km depth. This distribution was computed
by a run with Eq. (4) and rn = 0 for the geological present.

and for different ages in the evolution of the system. Only non-dimensional
quantities of different runs have been compared in the Figs. 3 through 9,
where the systematic variation of the level of the viscosity profile was gener-
ated by the variation of rn. Walzer et al. (2002b) investigated the influence of
another temperature dependence of the viscosity on the distribution of non-
dimensional quantities. If the models are more realistic, it will be difficult to
discuss the mechanism since there is no simple superposition of the partial
mechanisms because of non-linear relationships. To state the facts oversubtly,
sometimes we have to decide whether we want to model nearer to geophysics
or nearer to theoretical fluid mechanics. The mentioned papers of the authors
try to bridge this gap.

Fig.3 shows the evolution of Ra (cf. Eq. (5)) as a function of rn. As ex-
pected, highly viscous models evolve considerably slowly. Based on PREM
and solid-state physics, our first supposition for the Earth was rn = 0 (Walzer
et al., 2002a). Another non-dimensional quantity, Ror, is represented as a
function of rn in Fig. 4. Ror is the ratio of the heat output per unit time
radiated into space at the Earth’s surface which stems from the Earth’s in-
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Fig. 3: The Rayleigh number, Ra(t), as a function of the non-dimensional parameter
rn. Open triangles represent an age of 4000Ma, filled triangles stand for
2000Ma, open circles for 500Ma, filled circles for 0Ma.

Fig. 4: The reciprocal value of the Urey number, Ror(t), versus rn. For explanation
of symbols see Fig. 3.
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Fig. 5: The Nusselt number, Nu(t), versus rn. For explanation of symbols see Fig. 3.

terior to the radiogenic heat per unit time generated in the Earth’s interior.
The well-known Urey number is the reciprocal value of Ror. We have

Ror = Aq/M(Q/ρ) (9)

where all used quantities are defined above. Excluding the initial phase of the
Earth’s evolution with the differentiation of core and primordial mantle, the
time average of Ror is 1.85 according to Stacey and Stacey (1999). According
to Fig. 4, this requirement is fulfilled for the runs with rn = +0.1 and
rn = +0.2, in case of wider error bars for 0.0 ≤ rn ≤ +0.3. The interval
+ 1.0 ≤ rn ≤ +1.3 does not give an appropriate solution since Fig. 5 shows
too low Nusselt numbers for this range. For an age of 4000Ma, the maximum
Nusselt number is at rn = +0.1 according to Fig. 5. This is within the most
favored rn-span and near rn = 0.0 which stems from the derivation of Walzer
et al.(2002a). Fig. 7 shows that the maximum of the Nusselt numbers for an
age of 4000Ma and a relative maximum of Nu for an age of 2000Ma are
situated at about Ra(1) = 0.89 × 106. The quantity Ra(1) is the Rayleigh
number, Ra, defined by Eq. (5), temporally averaged over the last 4000Ma.
A comparison of the Figs. 5 and 7 demonstrates that for the low Nusselt
numbers, Nu, which correspond to the interval + 1.0 ≤ rn ≤ +1.3, the
relation Ra(1) < 4× 105 applies. Since Ra(1) = 0.89× 106 seems to be more
realistic, this is a further reason to exclude +1.0 ≤ rn ≤ +1.3 and higher rn
for Earth-like models. Taking no account of these strongly viscous models,
Fig. 5 shows the greatest decrease in the Nusselt number during the last
4000Ma.

Fig. 6 demonstrates the distribution of Nu versus Ra(2). The latter value
is the time average of Ra over the last 2000 Ma. Ror(2) is defined by analogy.
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Ror(2) versus Ra(2) is shown by Fig. 8. The realistic value of Ror(2) = 1.85,
realistic according to Stacey and Stacey (1999), is situated somewhere in the
flat maximum of Fig. 8. The relation between the temporal averages over
the last 4000Ma of Nusselt numbers and of Rayleigh numbers is depicted in
Fig. 9. The exact relations to theoretical values can be checked only for a
simplified mechanism. But according to tendency, the Nu(1)-Ra(1) curve

Fig. 6: The Nusselt number, Nu(t), versus Ra(2). The quantity Ra(2) is the
Rayleigh number, Ra, averaged over the last 2000Ma. For explanation of
symbols see Fig. 3.

corresponds to the usual theoretical expectations. Fig. 10 is the only picture
with a dimensional quantity, namely qob, the heat flow in mWm−2, averaged
over the upper surface of the mantle. The quantity qob is plotted as a function
of the non-dimensional rn. The present-day mean heat flow at the Earth’s
surface is 87mWm−2, the present day mean heat flow at the upper surface
of the mantle is 72mWm−2 according to Schubert et al. (2001). For the lat-
ter value, the contribution of the crust has been dropped. An approximate
equality of the computed present-day heat flows, i.e the solid circles of Fig.
10, with the observed 72mWm−2 is given for rn = +0.1 and rn = +0.2,
if somewhat larger error bars are accepted, for 0.0 ≤ rn ≤ +0.3. A second
corresponding interval would be +1.0 ≤ rn ≤ +1.3, but this second interval
has to be excluded for the above mentioned reasons. Since the observed qob
and Ror values stem from different information sources, this can be regarded
as a confirmation that, using the interval 0.0 ≤ rn ≤ +0.3, the model pro-
duces the most Earth-like results. Further conclusions are to be found in the
abstract.
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Fig. 7: Nu versus Ra(1). The quantitiy Ra(1) is the Rayleigh number, Ra, averaged
over the last 4000Ma. For explanation of symbols see Fig. 3.

Fig. 8: Ror(2) versus Ra(2). The supplement (2) means the time average over the
last 2000Ma.
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Fig. 9: The Nusselt number, Nu(1), versus the Rayleigh number, Ra(1). The sup-
plement (1) stands for the time average over the last 4000Ma.

Fig. 10: The laterally averaged heat flow, qob(t), at the upper surface of the spherical
shell versus the non-dimensional rn. For explanation of symbols see Fig. 3.
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4 Some aspects of computing

The differential equations of convection in a compressional spherical shell
are solved using a three-dimensional FE method, a fast multigrid solver and
the second-order Runge-Kutta procedure. The mesh was generated by pro-
jection of a regular icosahedron onto a sphere. So, the spherical surface was
divided into twenty spherical triangles or ten spherical diamonds. The suc-
cessive dyadic mesh refinement procedure connects the midpoints of each
side of a spherical triangle with a great circle. So, each triangle is subdivided
into four smaller triangles. The radial distribution of the different spherical-
surface triangular networks is so that the volumes of the cells are nearly
equal. More details are given by Baumgardner (1983), Bunge et al. (1997)
and Yang (1997). We used 1351746 or 10649730 grid points per run. Ra(t),
Nu(t), Ror(t) and other functions are nearly identical for runs with the differ-
ent grid point numbers. For the most runs we used 128 processors on hwwt3e.
The runs need 1 through 5 hours of run time. Fig 11. shows the scaling degree
of the code for runs with 16, 32, 64 and 128 processors using 1351746 grid
points.

Fig. 11: Scaling degree
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5 A modification of the model

If we replace Eq. (4) by

η(r, θ, φ, t) = 10rn · η1(r) · exp

[

ct · Tm

(

1

T (r, θ, φ, t)
−

1

Tav (r, t)

)]

(10)

then we receive extremely thin slab-like downwellings. They are represented
by thin blue lines in Fig. 12. The only difference between Fig. 2 and Fig. 12 is
caused by the different temperature dependences (4) and (10). θ denotes the
colatitude and φ the geographical longitude. In the lower half of the mantle,
ct = 2. In the upper half of the mantle, ct = 0.

Fig. 12: Colors represent the temperature, arrows stand for the creeping velocities
on an equal-area projection in 134.8 km depth. This distribution is the
result of a run with Eq. (10) and rn = 0 for the geological present. Although
near the surface there is no plate-like distribution of the velocity arrows,
the subducting downwellings (blue) are nearly slab-like. They are relatively
distinct blue lines in 1350 km depth, yet, notwithstanding that a Newtonian
rheology was presumed.



15

Acknowledgment

The provision of computer resources at the Rechenzentrum der Universität
Stuttgart (HLRS) and at the John von Neumann Institute of Computing
Juelich (NIC) is gratefully acknowledged.

References
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