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subducting sheets are notable since the viscosity is Newtonian. On the other
hand, it is not surprising there are no transform-like features at the surface of
the model. We compute laterally averaged heat flow at the Earth’s surface, the
ratio of heat output to radiogenic heat production, Ror, the Rayleigh number
and the Nusselt number as a function of time. Nu(2) denotes the temporal
average of the Nusselt number of a run for the last 2000 Ma of the evolution,
Ra(2) is the temporal average of the Rayleigh number, respectively. For a wide
parameter range, we obtain Nu(2) = 0.120 Ra0.295

(2) in this model.

1 Introduction

The focus of this paper is a parameter variation of the radial viscosity profile
of the Earth’s mantle and a variation of non-dimensional numbers that char-
acterize thermal convection. The patterns of the planforms are relevant, too.
We take an interest not only in convection of the geological present but also in
the evolution of relevant parameters, e.g. Nusselt number and Urey number,
as a function of time in the past.
For reasons explained in Section 3.4, we assume that the segregation of the
metallic core and the primordial silicate mantle was finished (4.49 ± 0.03) ×
109 a ago. The present model is essentially a viscous spherical shell heated
mainly by radioactive decay from within and, only to a minor degree, from
below. The spherical shell had a primordial initial heat and cooled down the
course of the thermal evolution. For geochemical reasons, the start of the
evolution of the system was fixed for an age of 4.49 Ga. In spite of this
and other geochemical and geophysical specifications of the model, we are
of course not able to model the Earth’s mantle in a self-consistent manner,
taking into account all the complexities necessary. E.g., it is not the focus of
this paper to contribute to the problem of self-consistent generation of oceanic
lithospheric plates (Bercovici, 1996; Christensen, 1996; Trompert and Hansen,
1998; Tackley, 2000a, 2000b, 2001, Bercovici et al., 2001a; etc.). Furthermore,
the mantle of the model is chemically homogeneous. It contains no chemi-
cally different reservoirs. At the upper surface, there are no continents that
would be able to modify the upper boundary conditions. Therefore the model
is heated, spatially homogeneously and temporally decaying, essentially from
within supposing the abundances of McCulloch and Bennett (1994) that do
not essentially deviate from the primordial mantle abundances of Hofmann
(1988). Although we fix further quantities and incorporate the two major min-
eral phase transitions into the model, we are able to characterize the essential
features of the evolution of the system by a few non-dimensional numbers as
the Rayleigh number, Ra, the Nusselt number, Nu, the reciprocal value, Ror,
of the Urey number, the non-dimensional viscosity-level number, rn, etc. We
varied the mentioned numbers since many geophysical properties are not well
constrained. The variation of the mantle’s viscosity has the largest effect on
the mechanism and on the non-dimensional numbers. Therefore, this varia-
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tion is the center of this paper. Of course, the results directly refer only to
the mechanism of the model and not immediately to the real mantle. Every
geodynamical model can be criticized from two flanks. Firstly, it is feasible
to refer to some non-included feature of the real mantle. In our model, e.g.,
volatiles are not explicitly included. In this case, a critical reader could de-
mand a more complex model. On the other hand, another reader could require
a simplification to allow that new understanding of fluid dynamics comes out
of this paper. So, we would learn to understand each single mechanism. But
unfortunately, a linear superposition of solutions is not possible since the
equations are nonlinear. Therefore, it is legitimate to find a geophysical com-
promise between the two mentioned contradictory demands, provided that we
can grasp the essence by non-dimensional numbers etc. The usual survey of
related evolution and convection models occurs in Section 5.

2 Viscosity. General considerations

So far, the public discussion of the influence of viscosity on mantle convection
was concentrated on temperature dependence. As is well known, Bénard con-
vection in a constant viscosity fluid layer can be parameterized by the Nusselt
number and the Rayleigh number only. If, additionally, the temperature de-
pendence is taken into account then further parameters have to be introduced.
If we have the simple expression

η = ηref · exp[−E(T − Tref )] (1)

then a further non-dimensional number, rη , has to be introduced where

rη = exp(E · ∆T ) (2)

η is viscosity, ηref is reference viscosity, E is a constant, T is temperature,
Tref is reference temperature, rη is a viscosity ratio, and ∆T is the fixed total
temperature difference across the fluid layer. In this simple case, convection is
in the small viscosity contrast regime for rη ≤ 102, in the sluggish-lid regime
for 102 < rη < 104, and in the stagnant-lid regime for rη ≥ 104 (Christensen,
1985, Solomatov, 1995, Reese et al., 1998, 1999, Schubert et al., 2001). The
viscosity between the two thermal boundary layers is nearly constant. If it
is intended to apply such simple temperature-dependent viscosity convection
models to the mantle then we raise three principal objections to the effect
that corresponding supplementations are necessary:
a) Viscosity is also pressure-dependent. In particular for minerals of the lower
mantle, the rising pressure causes a strongly increasing viscosity. Even if the
lower-mantle composition would not depend on depth, the product of acti-
vation volume and pressure generates a strong viscosity increase with depth,
without jumps, so that the temperature effect is overcompensated except per-
haps for D′′ and plumes.
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b) It is an obvious assumption that not only density, compressional velocity
and shear velocity jump at the major phase boundaries of the mantle but also
activation energy and activation volume of the relevant creeping mechanism
(Karato et al., 1995, Karato, 1997a, Ranalli, 1998). Since the activation en-
thalpy is in the exponent of the viscosity equation, major viscosity jumps are
to be expected. We will show that the influences of a) and b) on the planforms
are essential.
c) We take an interest not only in mantle convection of a short time interval
but also in the thermal evolution all the 4490 Ma round. Based on geological
observations, it is a realistic approach to assume a constant upper surface
temperature. However, there are good reasons and observations to assume
that the volumetrically averaged temperature, Ta, of the mantle diminishes
as a function of time. Therefore, the temperature at the core-mantle boundary
(CMB) is probably not a constant with respect to time. For evolution models,
the difference ∆T cannot be a constant. This conclusion applies equally to
viscous layer models and spherical shell models. Further arguments are given
in Section 3.4.

Fig. 1. The basic radial viscosity profile, η1(r) for rn = 0.

Because of a) and b) we offer now a survey of possible radial viscosity profiles
for the Earth’s mantle. We then present the reasons for the viscosity profile,
we favor most, as shown in Fig. 1 and specified by Eq. (5). It is this profile we
than apply in our three-dimensional thermal evolution model of the mantle.
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Starting from this preferred viscosity distribution, we vary our parameters to
learn the range of validity of the corresponding numerical solutions. Increasing
pressure reduces the number of defects, but increasing temperature generates
an increased number of defects and dislocations. The change in viscosity with
pressure is due not only to the number of defects or dislocations, but also to
the change in their mobility, i.e., the energy required to jump from one site to
another increases with pressure. Therefore, the solid-state viscosity increases
with increasing pressure and decreases with increasing temperature. Because
the P, T -dependence of the other physical parameters is much smaller, we as-
sume only a radial dependence in these other quantities.
Unfortunately, the viscosity of the mantle is relatively poorly constrained.
There are two classes of methods for estimating mantle viscosity as a function
of depth. The first class of methods relies upon geophysical observables such as
post-glacial rebound data, the geoid, global seismic tomography models, and
observed surface heat flow. The second class relies upon physical investigations
of the creep mechanisms in monocrystalline and polycrystalline silicates and
oxides at high pressure and high temperature. The first class is exemplified by
investigations that derive depth-dependent mantle viscosity from deformation
of spherical-earth models by surface loads, e.g., by a changing ice-water dis-
tribution (Lambeck and Johnston, 1998). In addition there are anelastically
compressible internal loading theories. Tomography derived differences in the
seismic compressional wave velocity, vp, and the seismic shear wave velocity,
vs, can be converted into density differences using an empirical relation. The
observed aspherical geoid anomalies as well as the observed free-air gravity
field ought to be identical to the corresponding theoretical quantities arising
from such density differences. Such studies typically assume mantle convection
is driven by density differences derived from the tomography. In a convecting
mantle, the actual geoid depends not only on the density heterogeneity but
also on the mantle’s viscosity structure. Typically, however, calculations of
this sort that seek to recover the mantle’s viscosity structure have yielded
wildly different viscosity distributions as a function of depth. Various alter-
natives have been explored to reduce this ambiguity. Pari and Peltier (1998),
for example, sought to mitigate the extreme degree of nonuniqueness by con-
straining the radial component of the internal-load driven flow velocity to be
linearly related to the surface heat flow.
In the seismic velocity-to-density scaling it is usually assumed that the seis-
mic velocity anomalies have a thermal origin. Since this premise is clearly
wrong for the continental lithospheric mantle and partly wrong for subducted
oceanic slabs, Kido and Čadek (1997) restricted this procedure to only the
oceanic geoid at intermediate degrees (l= 12–15) and to areas at a sufficiently
large distance from slabs. As a starting point, they explored three different
seismic tomography models and five rather different radial profiles for the
velocity-to-density scaling factors (∂ ln ρ/∂ ln vp) and (∂ ln ρ/∂ ln vs). Their
inversion technique sought to maximize the correlation between observed and
predicted oceanic geoid at degrees 12–25. Kido and Čadek (1997) used a ge-
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netic algorithm to find the maximum correlation coefficient. They found two
low-viscosity layers from their inversions for all 15 combinations of the three
seismic tomography models and the five velocity-to-density scaling profiles.
One of these layers was the usual asthenosphere immediately beneath the
lithosphere, while the other one was situated within the upper quarter of the
lower mantle.
We suggest that the most likely profiles have a second low viscosity layer that
begins immediately beneath the 660-km phase boundary since the activation
energy and the activation volume of the relevant minerals must jump at the
phase boundary independent of the prevailing creeping mechanism. Moreover,
the grain-size reduction of material flowing downward through the 660-km
boundary is a good argument in favor of a second low-viscosity layer just be-
low the 660 (Kubo et al., 2000). Čadek and van den Berg (1998) discussed
a parameterization of the radial temperature profile of the mantle where the
geoid and the seismic velocities have been taken as observables. The well-
known non-unique nature of the geoid inversions leads to two different sets of
viscosity profiles. The first set, called A,B, has a stiff lithosphere at the top
that is underlaid by a thick asthenosphere between 100 and 400 km depth
and a viscosity maximum around 500 km depth. The next layers consist of
a narrow low-viscosity zone above the 660-km discontinuity and a uniformly
high viscosity through most of lower mantle. Only near the CMB does the
viscosity decrease. A second set of viscosity profiles, called C,D, also display
a stiff lithospheric lid. Beneath this lid is a flat viscosity minimum down to
660 km. At 660 km depth, the viscosity increases abruptly by 2-3 orders of
magnitude followed by a second low-viscosity layer between 800 and 1000 km
depth. A remarkable feature of the C,D viscosity profile is a broad viscosity
maximum between 2000 and 2500 km depth. Finally, as in the A,B case, the
viscosity decreases near the CMB.
A second class of methods for constraining the mantle’s viscosity profile comes
from mineral physics. Based on broad consensus, Ranalli (1998) concluded
that the rheology of the asthenosphere between 100 and 410 km depth is de-
termined primarily by the creep properties of olivine, that of the transition
layer primarily by the creep properties of spinel and garnet phases, and that
of the lower mantle primarily by the properties of perovskite. If there is no
drastic reduction in grain size within the transition layer, the creep properties
of spinel and garnet appear to exclude low viscosity in this zone. Therefore we
conclude the A,B set of viscosity profiles by Čadek and van den Berg (1998)
must be excluded because of their narrow low-viscosity layer above the 660-
km discontinuity. The main features of the C,D profiles seem more probable
than those of the A,B profiles since solid-state physics considerations argue
for a broad viscosity maximum in the lowermost 1000 km of the mantle apart
from the D′′ layer. For each of the different creep mechanisms, Ranalli (1998)
specified values for the activation energy, E0, and the activation volume, V0.
Even if some details are uncertain, it is evident that the viscosity must show
considerable jumps at the phase boundaries in 410, 520, and 660 km of depth
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since E0 and V0 are in the exponent of the function that describes the P,T -
dependence of the viscosity.
Karato (1997a) emphasizes that garnet has a unique crystal structure that
does not allow easy dislocation glide. An increase in density and seismic wave
velocities does not mean that the viscosity continuously rises with depth since
the resistance to plastic deformation in garnets is considerably higher than
that of perovskite, olivine, spinel and most of the remaining mantle minerals.
Karato et al. (1995) studied the deformation properties of both oxide and
silicate garnets from room temperature up to T = 0.95 Tm, where Tm denotes
the melting temperature. They used an analogue materials approach to search
for systematics since majorite is stable only at very high pressures. In their
indirect approach, they used uvarovite, spessartine, grossular and some other
garnets that belong to the same isomechanical group. All samples had high
strength both at high temperatures (creep) and at low temperature (hard-
ness). Karato et al. (1995) concluded that “the difference in creep strength
between garnet and olivine compared at the same T/Tm is about a factor of
10, which would translate into a difference in diffusion coefficient of a factor
of ∼103, if creep were diffusion controlled.” A similar statement applies for
the comparison between majorite and perovskite.
This is one of the reasons why we introduced the radius-dependent part of
the viscosity in the upper half of the mantle as shown in Fig. 1. For the lower
part of the mantle, for depths between 1234.4 and 2891 km, we assume that
perovskite controls the shear creeping and that the activation enthalpy can
be estimated using the pressure dependence of the melting temperature of
perovskite according to Zerr and Boehler (1993, 1994). Of course, we are con-
scious of the fact that the viscosity should jump abruptly at 410, 520 and
660 km depth. However, to avoid numerical difficulties we smooth the viscos-
ity at these discontinuities.
There are two reasons to conclude the existence of a high-viscosity transi-
tion layer. The first reason was discussed by Karato et al. (1995). If the upper
mantle consists of pyrolite with 20-40 % garnet, then the garnet does not con-
trol the rheology. For a model with more than 50 % garnet, the garnet would
cause a maximum of the effective viscosity in the transition layer. Already
more than a decade ago, Ringwood (1990) concluded more than 90 % garnet
should exist at the bottom of the transition layer. Weidner (2001) showed
that the stress capacity of the majorite, pyrope, wadsleyite and ringwoodite
of the transition layer is much higher than that of the olivine above and the
MgO below of it. The possible influence of water on the viscosity of the tran-
sition layer is discussed by Karato(2003). A second reason for a high-viscosity
transition layer is derived in Section 3.1.

3 Model

In the following, the parts of the present model are consecutively presented.
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3.1 The viscosity of the model

In this Section, we treat only that aspects of viscosity which are necessary
for computation. In Section 2 we have put forward an argument for viscosity
jumps at the major phase transitions in the mantle. A reason for the assump-
tion of a high-viscosity transition layer was introduced in a paper by Walzer
and Hendel (2003). In that paper, the authors derived the viscosity as a func-
tion of depth based on a method independent of prior geophysical approaches
and also independent of approaches based on the distribution of minerals in
the mantle.
The authors started from a self-consistent theory using the Helmholtz free
energy, an equation of state (EoS), the free-volume Grüneisen parameter and
Lindemann’s law. Viscosity is determined as a function of melting temper-
ature obtained from Lindemann’s law. Walzer and Hendel (2003) applied
the Ullmann-Pan’kov EoS, whereas in the present paper we use the Birch-
Murnaghan EoS. We note that Birch-Murnaghan is a special case of the
Ullmann-Pan’kov for K ′

0 = 4, where K ′

0 is the pressure derivative of the zero
pressure bulk modulus. To obtain the relative variation in radial viscosity
distribution, Walzer and Hendel (2003) relied upon the pressure, P , the bulk
modulus, K , and ∂K/∂P from PREM (Dziewonski and Anderson, 1981) that
is derived from seismic observations. For the absolute scale of the viscosity
profile, Walzer and Hendel (2003) used the standard postglacial-uplift viscos-
ity of the asthenosphere beneath the continental lithosphere. Two important
conclusions of Walzer and Hendel (2003) are that not only the asthenosphere,
but also the upper part of the lower mantle, has low viscosity and that a
high-viscosity transition layer tends to divide the mantle into two principal
reservoirs relative to concentrations of incompatible elements and volatiles.
The transition layer acts as a barrier, but a permeable one, to flow across the
mantle.
In the present approach, we do not apply the values of P , K and ∂K/∂P
directly from PREM but rather values that were first smoothed by means of
the Birch-Murnaghan EoS (Cf. Fig.2). Of course, we do not smooth across
the phase boundaries. Apart from this difference, in the present paper, we
derive our radial viscosity profile for 0 to 1234.4 km depth using the method
of Walzer and Hendel (2003). This procedure avoids complex assumptions
regarding the depth distribution of mineral phases but nevertheless allows
derivation of the viscosity from observables. For depths between 1234.4 km
and 2891 km, we derive the radial viscosity profile from the melting curve of
perovskite (Zerr and Boehler, 1993, 1994; Boehler 1997). The resulting pro-
file is displayed in Fig. 1 where viscosity jumps at the phase boundaries have
been replaced by steep viscosity gradients to avoid numerical difficulties in
our convection code. The general form of the P,T -dependence of viscosity, η,
is given by the following expression where the pressure dependence is hidden
in the melting temperature, Tm.

η = A · exp (c · Tm/T ) (3)
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This relation is equivalent to

η = A · exp

(

c
Tm

Tav

)

· exp

[

cTm

(

1

T
−

1

Tav

)]

(4)

where Tav is the laterally averaged temperature. The formula has been slightly
simplified by interpreting the first two factors as the radial factor, η1(r), of
the viscosity.

η(r, θ, φ, t) = 10rn · η1(r) · exp

[

ct · Tm(r) ·

(

1

T (r, θ, φ, t)
−

1

Tav(r, t)

)]

(5)

where r is the radius, θ the colatitude, φ the longitude and t the time. The
viscosity therefore depends on these four independent variables.
The introduction of the factor 10rn is a generalization of the equation. For
our first estimate of the viscosity, rn = 0 has been chosen. The variation of
the non-dimensional parameter rn generates a systematic shift of the viscosity
level. In Section 4.4, the form of the initial radial viscosity profile has been
additionally varied to be independent of the specific derivation of η1(r).

3.2 Conservation of mass, momentum and energy

The model is based on the numerical solution of the equations expressing
conservation of mass, momentum, and energy. The equation describing the
conservation of mass,

∂ρ

∂t
+ 5 · (ρ~v) = 0 (6)

under the anelastic-liquid approximation (i.e., neglecting the ∂ρ
∂t

term) sim-
plifies to

5 · ~v = −
1

ρ
~v · 5ρ (7)

where ρ is density, t time, and ~v is velocity.
The conservation of momentum can be expressed by

ρ

(

∂~v

∂t
+ ~v · 5~v

)

= −5 P + ρ~g +
∂

∂xk

τik (8)

where P is the pressure, ~g is the gravity acceleration, and τik is the deviatoric
stress tensor. For spherical symmetry, we have ~g = −g~er and the hydrostatic
pressure gradient may be written

−
∂P

∂r
= ρg (9)

By definition KS = −V
(

∂P
∂V

)

S
and V

V0

= ρ0

ρ
, where KS is the adiabatic bulk

modulus, V volume, S entropy, r the radial distance from the Earth’s center.
Hence
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KS = ρ

(

∂P

∂ρ

)

S

= ρ

(

∂P

∂r

)

S

(

∂r

∂ρ

)

S

(10)

Substituting Eq. (9) into Eq. (10) we obtain

(

∂ρ

∂r

)

S

=
−ρ2g

KS

(11)

Upon neglecting horizontal spatial variations in ρ Eqs. (7) and (11) yield

5 · ~v = −
1

ρ
~v · 5ρ ∼= −

1

ρ
vr

∂ρ

∂r
=

ρgvr

KS

(12)

It is well-known that

KS =
cp

cv

KT = (1 + αγthT )KT (13)

where KT is the isothermal bulk modulus, cp the specific heat at constant
pressure, cv the specific heat at constant volume, α the coefficient of thermal
expansion, γth the thermodynamic Grüneisen parameter and T the absolute
temperature.
Eq. (8) can be rewritten as

ρ
dvi

dt
= ρgi +

∂σki

∂xk

(14)

Using this equation, the conservation of energy can be expressed as follows

ρ
du

dt
+

∂qi

∂xi

= Q + σik ε̇ik (15)

where u is the specific internal energy, Q is the heat generation rate per
unit volume; vi, gi, qi, xi, σik , ε̇ik are the components of velocity, gravity
acceleration, heat flow density, location vector, stress tensor and strain-rate
tensor, respectively.
Another formulation of Eq. (15) is

ρ

[

∂

∂t
+ ~v · 5

]

u = 5 · (k 5 T ) + Q− P 5 ·~v + 2WD (16)

where
2WD = σik ε̇ik + P 5 ·~v (17)

and

qk = −k
∂T

∂xk

(18)

k is the thermal conductivity. Using

du = T ds − P dv (19)
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and

du = T

(

∂s

∂T

)

P

dT + T

(

∂s

∂P

)

T

dP − Pdv (20)

we eliminate the specific internal energy in Eq. (16) and obtain the equation

ρcp

dT

dt
= 5 · (k 5 T ) + Q + αT

dP

dt
+ 2WD (21)

since

cp = T

(

∂s

∂T

)

P

and

(

∂s

∂P

)

T

= −

(

∂v

∂T

)

P

= −vα (22)

Here is s the specific entropy, v the specific volume, cp the specific heat at
constant pressure and α the coefficient of thermal expansion.
Next let us derive a less well known version of the conservation of energy
equation: Eq. (16) is equivalent to

ρ

(

du

dt
+ P

dv

dt

)

= τik

∂vi

∂xk

+ 5 · (k 5 T ) + Q (23)

because of Eq. (7) and 1
ρ

= v.

Inserting Eq. (19) into Eq. (23), we obtain

ρT
ds

dt
= τik

∂vi

∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+ Q (24)

On the other hand,

ds =

(

∂s

∂T

)

v

dT +

(

∂s

∂v

)

T

dv (25)

and
(

∂s

∂T

)

v

=
cv

T
,

(

∂s

∂v

)

T

= αKT (26)

This implies

Tds = cvdT + αKT Td

(

1

ρ

)

(27)

or

Tds = cvdT −
cvγT

ρ
dρ (28)

where

γth =
αKT

cvρ
(29)

is the thermodynamic Grüneisen parameter.
Inserting Eq. (28) into Eq. (24) we obtain

ρcv

dT

dt
− cvγT

dρ

dt
= τik

∂vi

∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+ Q (30)
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From Equations (6) and (30)

ρcv

dT

dt
= −ρcvγT

∂vj

∂xj

+ τik

∂vi

∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+ Q (31)

or

∂T

dt
= −vj

∂

∂xj

T − γT
∂vj

∂xj

+
1

ρcv

[

τik

∂vi

∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+ Q

]

(32)

or

∂T

∂t
= −

∂(Tvj)

∂xj

− (γ − 1)T
∂vj

∂xj

+
1

ρcv

[

τik

∂vi

∂xk

+
∂

∂xj

(

k
∂

∂xj

T

)

+ Q

]

(33)

Thus we have an alternative expression for the energy conservation. Although
cv appears in Eq. (33), the latter is equivalent to Eq. (21) where cp is used.
The deviatoric stress tensor can be expressed by

τik = η

(

∂vi

∂xk

+
∂vk

∂xi

−
2

3

∂vj

∂xj

δik

)

(34)

in the Eqs. (8) and (33), where η is the viscosity. For the equation of state we
choose

ρ = ρr

[

1 − α(T − Tr) + K−1
T (P − Pr) +

2
∑

k=1

Γk∆ρk/ρr

]

(35)

where the index r refers to the adiabatic reference state, ∆ρk/ρr or fak (see
Table 1) denotes the non-dimensional density jump for the kth phase tran-
sition. Γk is a measure of the relative fraction of the heavier phase where

Γk = 1
2

(

1 + tanh πk

dk

)

with πk = P −P0k−γkT describing the excess pressure

πk. The quantity P0k is the transition pressure for vanishing temperature T .
A non-dimensional transition width is denoted by dk (see Table 1). γk (see
Table 1) represents the Clapeyron slope for the kth phase transition. Γk and
πk have been introduced by Richter (1973) and Christensen and Yuen (1985).
Because of the very high Prandtl number, the left-hand side of Eq. (8) van-
ishes. So, we have the following version of the equation of conservation of
momentum:

0 = −
∂

∂xi

(P − Pr) + (ρ − ρr)gi(r) +
∂

∂xk

τik (36)

The final version of the equation of conservation of mass is

0 =
∂

∂xj

ρvj (37)

which stems from Eq. (7). The Equations (33), (35), (36) and (37) are a system
of six scalar equations we use to determine six scalar unknown functions,
namely T , ρ, P and the three components of vi.
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3.3 The calculation of the functions P , ρ, K, γ, α, cp and cv as a

function of radius

In this paper we assume compressible convection in a spherical shell. For our
starting model with rn = 0, we choose our parameters to approach earth-
like conditions so far as limits on spatial resolutions allow. The viscosity,
η, is the most important material parameter. It depends not only on the
pressure, P , and therefore on the radius, r, but also on the temperature,
T . Therefore, the viscosity has lateral and temporal dependence (see Section
3.1). As Zhang and Yuen (1996), our model includes some other quantities
that weakly depend on radius. The first panel of Fig. 2 displays pressure as a

Fig. 2. The pressure, P , the density, ρ, and the bulk modulus, K, as a function of
depth.

function of depth. The corresponding numerical values are taken from Table
II of PREM (Dziewonski and Anderson, 1981). Our profiles for density, ρ,
and bulk modulus, K, we obtain by a Birch-Murnaghan EoS, to smooth the
discrete PREM fields, separately for each depth interval. Because there are
only a few numerical values for ρ and K in the upper shells of the mantle, we
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used a second-order Birch-Murnaghan EoS for the four shells between 0, 24.5,
220, 400, and 500 km depth. However, for the rest of the mantle we apply
a third-order Birch-Murnaghan EoS. The resulting density profile is shown
in the second panel of Fig. 2, while the bulk modulus profile is depicted in
the third panel. The relative density jumps, fa1 and fa2, for the major phase
transitions at the top and bottom of the transition zone are given in Table
1. We use these in the calculation to make the model consistent. Irvine and
Stacey (1975) calculated the free-volume Grüneisen parameter from coupled
three-dimensional vibrations in a fcc crystal. We used their result

γ =
1
2 · dK

dP
− 5

6 + 2
9 · P

K

1 − 4
3 · P

K

(38)

to evaluate γ from the seismically determined but smoothed P and K. In
this connection, we assume Eq. (38) may be applied to other closely packed
lattices. The first panel of Fig.3 shows the Grüneisen parameter computed
in this way as a function of depth. This procedure has the advantage that
it involves no assumptions concerning the mantle’s chemical composition. Of
course, it is possible to use the more exact formula by Barton and Stacey
(1985)
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(39)

in place of Eq. (38). In this case, for perovskite the value f is 2.27 (Stacey,
1996), assuming 6 % of the Mg atoms in MgSiO3 are replaced by Fe. Using
Eq. (39), however, would force us to add assumptions concerning the miner-
alogical composition of the mantle and to estimate f(r) for the corresponding
mixtures of minerals. We can show this procedure alters our model only in
minor ways. We prefer to keep our model independent of the chemical com-
position and therefore choose f = 2.0 corresponding to Eq. (38).
There is no generally accepted model for the coefficient of thermal expan-
sion, α, for the Earth’s mantle. It is clear, however, that for all relevant
minerals α decreases with increasing pressure. Chopelas and Boehler (1992)
showed that the expansion coefficient for MgO is 5 × 10−5K−1 at adiabat-
ically decompressed mantle conditions (1 atm, 1700 K). But at the CMB
pressure, α for MgO decreases to 1 × 10−5K−1. Tackley (1997) estimated
α = 3.3 × 10−5K−1 at the surface and α = 1.1 × 10−5K−1 at the CMB.
Stacey (1998) investigated the thermoelasticity of mineral composites for the
mantle and found α = 3.35 × 10−5K−1 for the adiabatically decompressed
state and α = 1.07× 10−5K−1 at a depth of 2741 km. We choose a profile for
α that varies from α = 3.46×10−5K−1 at the surface to α = 1.15×10−5K−1

at the CMB. The curvature of the profile was obtained from the formula of
van den Berg and Yuen (1998, p. 223). The second panel of Fig. 3 displays
the coefficient of thermal expansion of our model as a function of depth. Ob-
viously, this is a simplification. In reality jumps in α should be expected at
the upper and lower boundaries of the transition layer that are comparable to
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Fig. 3. The Grüneisen parameter, γ, the coefficient of thermal expansion, α, the
specific heat at constant pressure, cp, and the specific heat at constant volume, cv,
as a function of depth.

the corresponding jumps in the Grüneisen parameter. From expressions (13)
and (29), we obtain the specific heat at constant pressure, cp, and the specific
heat at constant volume, cv, as a function of depth. These are plotted in the
third panel and fourth panel of Fig. 3, respectively.
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3.4 Heating, initial and boundary conditions

Here, we describe some additional assumptions of the present model, S1. The
age of the most meteorites is between 4.56 and 4.54 Ga (Dalrymple, 1991). It
is assumed that the radioactive decay of the most important heat-producing
elements began 4.56 Ga ago. If 0.07 Ga are needed for the segregation into
metallic core and silicate mantle then the primordial silicate mantle was fin-
ished before (4.49±0.03)×109 a (McCulloch and Bennett, 1998). There is no
perceivable change in the siderophile element concentrations of the rocks from
the Archean to the present time (O‘Neill and Palme, 1998). So, there is a high
probability that the Earth’s mantle and the core had no essential composi-
tional exchange since (4.49± 0.03)× 109 a. Therefore, this age represents the
beginning of the thermal mantle evolution for the present model. Walzer and
Hendel (1999) computed thermal mantle convection and chemical segregation
together in a 2-D model where the generation of the depleted mantle and the
growth of the continental crust were obtained as a function of time. In the
present paper, however, we confine ourselves to the thermal evolution problem
alone: the silicate mantle is homogeneously heated from within and also from
the CMB. It is assumed that the concentrations, aµν , of the radioactive ele-
ments of the primordial mantle according to McCulloch and Bennett (1994)
determine the internal heating (Cf. Table1). The time-dependent specific heat
production, H , is computed from

H =

4
∑

ν=1

aµνaifνH0ν exp(−t/τν) (40)

where τν denotes the decay time or the 1/e life, H0ν the initial heat generation
rate per unit volume of the νth radionuclide, aifν the isotopic abundance
factor, ν the indices of the four major heat-producing elements. The numerical
values we use are listed in Table 2.
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Table 1. Model parameters

Parameter Description Value

rmin Inner radius of spherical shell 3.480 × 106 m
rmax Outer radius of spherical shell 6.371 × 106 m

Temperature at the outer shell boundary 288 K
γ1 Clapeyron slope for the

olivine-spinel transition +3 × 106 Pa·K−1

γ2 Clapeyron slope for the
spinel-perovskite transition −4 × 106 Pa·K−1

fa1 Non-dimensional density jump for the
olivine-spinel transition 0.0547

fa2 Non-dimensional density jump for the
spinel-perovskite transition 0.0848
Begin of the thermal evolution of the
Earth’s silicate mantle 4.490 × 109 a

d1 Non-dimensional transition width for
the olivine-spinel transition 0.05

d2 Non-dimensional transition width for
the spinel-perovskite transition 0.05
Begin of the radioactive decay 4.565 × 109 a

ct Factor of the lateral viscosity variation 2
k Thermal conductivity 12 W·m−1

·K−1
qCMB Heat flow at the core-mantle boundary 28.9 mW·m−2

nr + 1 Number of radial levels 33
Number of grid points 1.351746 × 106

aµν(U) Concentration of uranium 0.0203 ppm
aµν(Th) Concentration of thorium 0.0853 ppm
aµν(K) Concentration of potassium 250 ppm

Table 2. Data on major heat-producing isotopes

Isotope 40K 232K 235U 238U

ν 1 2 3 4
τν [Ma] 2015.3 20212.2 1015.4 6446.2
H0ν [Wkg−1] 0.272 × 10−3 0.0330 × 10−3 47.89 × 10−3 0.1905 × 10−3

aifν 0.000119 1 0.0071 0.9928

The heat production rate per unit volume, Q, introduced in Section 3.2, is
given by

Q = H · ρ (41)

We assume free-slip and impermeable boundary conditions for both the
Earth’s surface and the CMB. What about the thermal boundary conditions?
The solar luminocity has increased by some 25 % since 4.56 Ga. On the other
hand, there are fluviatile and organic sediments in the Archean. Evidence of
that kind shows that the average surface temperature was constant with re-
spect to time. Obviously, some kind of thermostatic mechanism is working at
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the Earth’s surface, possibly the outer carbon cycle. In the contrary case, the
surface temperature ought to rise, since the average distance between sun and
Earth is constant because of the conservation of moment of momentum. In-
vestigations of Archean komatiites (Sleep, 1979) and theoretical estimates of
the Earth’s secular cooling rate (see Schubert et al., 2001) demonstrate a de-
crease of about 100 K Ga−1 for the volumetrically averaged temperature, Ta,
of the mantle. Since there is evidently no thermostatic mechanism at CMB,
we ought to expect that the CMB temperature is decreasing as a function
of time. Some authors write that it is well known that the core imposes a
uniform temperature at the base of the mantle. This is right for the depen-
dence of the location vector. For short-term convection investigations, it is a
good approach to fix the CMB temperature with respect to time, too. For the
evolution as a whole, it is very improbable that the CMB temperature is a
constant with respect to time. Instead we assume that the CMB heat flow has
been constant. Our justifications are given by Stacey’s (1992) Section 6.7.5
entitled Constancy of the Core-to-Mantle Heat Flux and by Appendix A of
Walzer and Hendel (1999). Anderson (1998) estimated a conductive power of
(4.4 ± 1) × 1012W flowing out of the core. Therefore, we assume a heat flow
of 28.9 mW·m−2 at the CMB. Consequently, the mantle in our model, S1,
is mainly heated from within but also somewhat from below. For the overall
mechanism of our model, this assumption is not very important. If we use
Tackley’s (2000b) assumption of zero heat flow at CMB the planforms in the
upper half of the mantle stay very similar. Only the plumes are reduced. We
could be tempted to replace the assumption of a constant core-to-mantle heat
flow, qCMB , by a prescribed decaying qCMB . However, Stevenson et al. (1983)
showed that the onset of inner core freezeout leads to slightly rising or nearly
constant qCMB-values of about 23 mW·m−2 for the second half of the Earth’s
history (see also Schubert et al., 2001, pp.607-609). The temporally and later-
ally averaged surface temperature of the Earth was 288 K for the last 40 years.
We assume this value as the constant surface temperature of the model.

3.5 Numerical method and implementation

The solutions of the system of differential equations of convection in a com-
pressional spherical shell, Eqs. (33) to (37) with the additional Eqs. (5), (40)
and (41), are obtained using a three-dimensional finite-element method, a fast
multigrid solver and the second-order Runge-Kutta procedure. The mesh is
generated by projection of a regular icosahedron onto a sphere to devide the
spherical surface into twenty spherical triangles or ten spherical diamonds. A
dyadic mesh refinement procedure connects the midpoints of each side of a tri-
angle with a great circle such that each triangle is subdivided into four smaller
triangles. Successive grid refinements generate an almost uniform triangular
discretization of the spherical surface of the desired resolution. Corresponding
mesh points of spherical surfaces at different depths are connected by radial
lines. The radial distribution of the different spherical-surface triangular net-
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Fig. 4. The evolution of the laterally averaged surface heat flow, qob, of the ratio
of the surface heat outflow per unit time to the mantle’s radiogenic heat production
per unit time, Ror, of the Rayleigh number, Ra, and of the Nusselt number, Nu.

works is so that the volumes of the cells are nearly equal. More details are
given by Baumgardner (1983, 1985), Bunge et al. (1997) and Yang (1997).
For the multitude of runs we needed for our parameter study, we employed a
mesh with 1351746 nodes. Some runs were made with 10649730 nodes to check
the convergence of the lower resolution runs. The result is that the laterally
averaged heat flow, the ratio of heat outflow to radiogenic heat production,
the Rayleigh number, and the Nusselt number as functions of the time show
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Fig. 5. (a) Spherical-shell convection of a Newtonian fluid heated from within and
slightly from below with depth- and temperature-dependent viscosity. The radial
factor of the viscosity is given by Fig.1. An equal-area projection of the planforms at
various depths: (a) 134.8 km, (b) 632.9 km, (c) 1130 km, (d) 1551 km. Temperature
is denoted by colors, creeping velocity by arrows.

hardly any discernable differences (< 0.5 %). Calculations were performed on
128 processors of a Cray T3E. A scalability test showed a scaling degree of
nearly 90 %. The code uses all processor–processor communications with the
same load. This is optimal for the T3E architecture. A hierarchically orga-
nized processor connection could not be effectively used by the code without
a basic time wasting reconstruction. The code was benchmarked for constant
viscosity convection by Bunge et al. (1997) with numerical results of Glatz-
maier (1988) for Nusselt numbers, peak temperatures, and peak velocities. A
good agreement (≤ 1.5 %) was found.

4 Results

4.1 Thin cold sheet-like downwellings

Before we examine results from our parameter study, we will describe the
numerical results from our reference model with rn = 0. We anticipate that
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Fig. 5. (b) Text see Fig. 5. (a). Here: 632.9 km depth

the main features of the solutions, especially of the planforms that we describe
here, apply also for a wider range of Rayleigh numbers. The first panel of Fig. 4
shows the averaged heat flow at the Earth’s surface as a function of time in the
past. The present-day heat flow from the starting model is 74.0 mW·m−2. By
comparison Pollack et al. (1993) found a mean global heat flow of 87 mW·m−2

for the present Earth based on 24774 heat flow measurements. Apart from
some initial transient behavior, the heat flow of the model declines in a smooth
fashion. The ratio of the heat outflow per unit of time to the radiogenic heat
produced in the mantle per unit of time, Ror, is displayed in the second
panel of Fig. 4. The present-day value of Ror is 1.851. Note that since about
2000 Ma the value of Ror changes only slightly. By way of comparison, Stacey
and Stacey (1999) estimate 14.4×1030 J for the total heat loss of the Earth
and 7.8×1030 J for the radiogenic heat of the Earth. The quotient of these
two numbers is 1.846. Ror is the reciprocal value of the Urey number. The
third panel of Fig. 4 shows the time history of the Rayleigh number, while
the fourth panel of Fig. 4 depicts the time history of Nusselt number.
Because of Section 3.4, the Rayleigh number

Ra =

〈

ραgh3

κηal

·
(Qh + qCMB)h

k

〉

(42)
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Fig. 5. (c) Text see Fig. 5. (a). Here: 1130 km depth

is better adapted to the problem than

RaB =

〈

ραgh3

κηal

〉

· ∆T (43)

since the mantle is mainly heated from within. The bracket 〈 〉 denotes a
volumetric average but not a temporal average. The temperature difference,
∆T , across the mantle is not constant for the evolution problem (see Section
3.4.). h is depth of CMB, κ is thermal diffusivity. Q is defined by Eqs. (40)
and (41). Therefore, the heat generation rate per volume, Q , is monotonously
declining as a function of time. The quantity ηal is given by

log ηal = 〈log η〉 (44)

The quantity ηal is also a function of time because of Eqs. (5) and (44).
Therefore Ra is a function of time. The Nusselt number, Nu, is the ratio of
the actual heat flow to the purely conductive heat flow down the superadia-
batic temperature gradient. Nu is a function of time, too.
Fig. 5 presents the temperature distribution (multicolored) and the solid-state
creep velocities (arrows) on equal-area projections for different depths. These
pictures are computed for the geological present using the radial viscosity
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Fig. 5. (d) Text see Fig. 5. (a). Here: 1551 km depth

profile of Fig. 1. The narrow blue stripes of Fig. 5(a) at 135 km depth are
remarkable and represent a network of interconnected downwelling sheets of
cold material. Fig. 5(b) shows that these sheets maintain their identity at a
depth of 633 km, and are sinking vertically with neglible horizontal displace-
ment. This reflects the simplicity of our treatment of the cold upper boundary
layer, a treatment that lacks buoyant continents, one-sided subduction, and
other plate-like features. Fig. 5(c) reveals that the thin downwelling sheets
persist to 1130 km depth. By 1550 km depth, however, the sheet-like charac-
ter of the downwellings has largely vanished as shown in Fig. 5(d). This fact
is probably a consequence of the viscosity hill of the lower mantle (Cf. Fig. 1).
Figs. 4 and 5 apply for a run with rn = 0. For higher values of rn, however,
the thin sheets dip deeper into the mantle. Two features of our solutions are
noteworthy:
a) Other published convection models with Newtonian rheology display much
wider zones of downwelling near the surface and
b) the relatively thin downwelling sheets in the present model freely penetrate
the high-viscosity transition layer.
For lack of space, we do not include a temporal sequence of plots of tempera-
ture and velocity from the early Archean (4000 Ma) to the present. However,
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the pattern of a network of thin downwelling sheets appears very early in the
calculation and changes only slowly with time. In the first 2000 Ma, some
new sheets form to subdivide originally oblong convective cells. In the last
2000 Ma, no new sheets appear, but some cells slowly grow, while other cells
slowly shrink. In general the positions of the cell centers are nearly stable.

4.2 Variation of non-dimensional numbers

We vary the parameter rn of Eq. (5) in the interval −0.5 ≤ rn ≤ +1.5. This is
a first step to become independent of the special results of the geophysically
derived viscosity model. First of all we don’t alter η1, i.e., only the level of
the radial reference viscosity profile is shifted as a whole without the altered
temperature influence on the viscosity that is included in the further com-
putation, too. The thickness of the subducting downwelling sheets decreases
with decreasing negative values of rn down to −0.5, i.e. for higher Rayleigh
numbers. In this way, the blue lines on the equal-area projection plots become
thinner and thinner with decreasing rn. Up to rn = + 0.3, the cold sheet-
like downwellings are rather thin yet, but the thickness slightly grows with
increasing rn. The more the quantity rn increases, the deeper the sheet-like
structures can be distinguished.
Now comes the main point: quantification of the results. Fig. 6 shows the
dependence of the Rayleigh number, Ra, on the non-dimensional viscosity
level parameter, rn. The definition of Ra is given by Eq. (42). It is an es-
sential feature of the evolution of the Earth that its direction is defined by
irreversible processes, especially that the heat generation rate per volume, Q,
decreases with time and that the Earth cools down, i.e., that the volumetri-
cally averaged temperature, Ta, diminishes. The latter process would happen,
of course, also if the internal heating would take place only at the beginning
by accretion. Therefore ηal rises as a function of time (Cf. Eqs. (5) and (44)).
On the other hand, Q, grows less because of the exponentially decreasing ra-
dioactive decay (Cf. Eg. (40)). So for all rn, the Rayleigh number decreases as
a function of time (Cf. Fig. 6 and capture). Initially, Ra diminishes quickly,
then only slowly, nearly independent of rn. On that account we computed the
temporal average of Ra only for the last 2000 Ma and called it Ra(2). In a
similar way, Fig. 7 represents the Nusselt number, Nu, for different ages as a
function of rn. For the interval −0.3 ≤ rn ≤ +0.1 , Nu, decreases somewhat
in the beginning and fluctuates only slightly around a rather stable value for
the main part of the evolution. For the same rn-interval, the sheet-like down-
wellings are not only marked but they stretch deeper into the mantle than for
runs with smaller rn and higher Ra. Fig.8 displays Ror for different ages as
a function of rn. For the last 2000 Ma and −0.1 ≤ rn ≤ +0.1, the reciprocal
value, Ror, of the Urey number is rather near the 1.85 value that has been
derived by Stacey and Stacey (1999). The interval +1.2 ≤ rn ≤ +1.4 has to
be excluded since the Nusselt numbers are too low in this range. For runs with
−0.5 ≤ rn ≤ +0.7, Ror does not vary about very much for the last 2000 Ma.
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Fig. 6. The Rayleigh number, Ra(t), as a function of the non-dimensional viscosity-
level parameter, rn. Open triangles represent an age of 4000 Ma, filled triangles stand
for 2000 Ma, open circles for 500 Ma, filled circles for 0 Ma.

Fig. 7. The Nusselt number Nu(t), vs. rn. For explanation of symbols see Fig. 6.
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Fig. 8. The reciprocal value, Ror(t), of the Urey number, versus rn. For explanation
of symbols see Fig. 6.

Although formulae like
Nu = cRaβ (45)

apply only for convection with constant viscosity and since certain param-
eterized steady-state convection models employ Eq. (45), we carry out the
following simple evaluation. Of course, Nu and Ra are functions of the time
in our more complex non-steady evolution model. We obtain Nu(2) and Ra(2)

calculating the temporal average of Nu(t) and Ra(t), respectively, for the last
2000 Ma. Nu(2) is plotted versus Ra(2) in Fig. 9. Each black square represents
one run. The solid curve is a least square fit to a power law similar to Eq.
(45). We obtained

Nu(2) = 0.120Ra0.295
(2) (46)

In Section 5 we discuss why Eq.(46) describes the Nu(2) – Ra(2) relation of
the numerical experiments in a rough approximation and why Eq. (46) is
similar to the Nu – Ra relation of simple steady-state convection models with
constant viscosity. A further set of runs showed that the radial profiles of γ,
α, cν and cp (Cf. Fig. 3) have only minor influence: Planforms as well as the
non-dimensional numbers Ra, Nu and Ror alter only slightly. Therefore and
for lack of space the corresponding plots are not presented here. Furthermore,
we introduced a volumetrically averaged Grüneisen parameter, γb, instead of
the radial gamma profile (Cf. Fig.3, first panel). Subsequently, this γb-value
has been varied. The results of the runs, e.g. the non-dimensional numbers and
temperature-plus-velocity plots, proved to be rather robust. As an example,
Fig. 10 shows Nu as a function of γb and reveals that the temporal dependence
of Nu is much stronger than the γb-dependence. Fig. 11 displays Ror(2) versus
rn where Ror(2) is the temporal average of Ror for the last 2000 Ma. The
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Fig. 9. An average Nusselt number, Nu(2), versus an average Rayleigh number,
Ra(2). The supplement (2) stands for the time average of the proper quantity over
the last 2000 Ma. Filled squares represent the results of different runs. The solid
curve is a non-linear least square fit to a power law of the form Nu(2) = c Ra

β

(2)

where c = 0.120 and β = 0.295.

value Ror = 1.85 according to Stacey and Stacey (1999) can be found at
about rn = −0.1 and rn = +1.1. Figs. 6 and 7 show that rn = + 1.1 must
drop out since otherwise Ra and Nu would be extremely low.

Fig. 10. The Nusselt number, Nu(t), as a function of the volumetrically averaged
Grüneisen parameter, γb. For explanation of symbols see Fig. 6.
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Fig. 11. The reciprocal value, Ror(2), of the average Urey number versus rn. The
supplement (2) denotes the time average of Ror over the last 2000 Ma.

4.3 Effects of rn-variations on planforms. Further variation of

model parameters

If, because of the last remarks, rn = −0.1 is regarded as the optimum value
of rn then we should have a look at the other results of the relevant run.
The first panel of Fig. 12 shows a laterally averaged surface heat flow that
decreases during nearly the whole Earth’s history and has a present value of
69.1 mWm−2. The variations of Ror during the last 2000 Ma are small. The
present value is 1.73. The curve of the Rayleigh number arrives at 1.12× 106

for today, and the present-day Nusselt number is 7.07. The last panel of Fig.
12 reveals that Nu is nearly a constant since about 4000 Ma. Fig. 13 rep-
resents the present-day distribution of temperature and creeping velocity in
134.8 km depth for rn = −0.1. As expected, there is no plate-like velocity
distribution near the surface since it is a Newtonian-fluid model. However,
the thickness of the blue lines is smaller yet than in the case with rn = 0.0
(Cf. Fig. 5(a)). The network of the sheet-like downwellings of both pictures
is related but in Fig. 13 some sheets are missing. The network of plate-like
subducting zones shows distinct outlines in 1150 km depth, yet. In greater
depths, the tendency to oblong isothermal lines gradually vanishes.
A few runs were performed with equivalent parameters but with an incom-
pressible EoS. The structure of the planforms was similar but the downwellings
were broader.
We also examined the effect of switching off the lateral temperature depen-
dence of the viscosity. The results confirm the prevailing wisdom that the
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Fig. 12. For rn = −0.1, the time dependence curves of the following quantities are
shown: laterally averaged surface heat flow, qob, the reciprocal value, Ror, of the
Urey number, the Rayleigh number, Ra, and the Nusselt number, Nu.

radial viscosity variation (Cf. Fig.1) is the decisive variation. We did not vary
the heating since the various chemical models for the Earth show only minor
differences regarding the concentration of the heat-producing elements in the
primordial mantle.
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Fig. 13. For rn = −0.1, temperature (color) and the creeping velocity (arrows) are
depicted on an equal-area projection of a spherical surface in 134.8 km depth for
the present time.

4.4 Runs with radial viscosity profiles without a second

low-viscosity layer

After confirming that variation in the viscosity level had the largest influence
on the results we sought to explore the effects of altering the profile. Although
the radial profile of Fig.1 seemed realistic on the basis of solid-state physics
and seismology, we decreased the viscosity minimum at the top of the lower
mantle stepwise until it vanished, to check its influence on the fluid mechanics.
Fig. 14 is the extreme case of such a profile. We ran a case with this viscosity
profile but everything else identical to our reference model. Fig. 15 reveals
the evolution of the laterally averaged surface heat flow, qob, the reciprocal
value, Ror, of the Urey number, the Rayleigh number, Ra, and the Nusselt
number, Nu. Fig. 16 is the counterpart of the Fig. 5(a). Fig. 16 shows broader
downwelling sheets than Fig.5(a). The number of cells is reduced. For the
depths 632.9 and 1130 km, the downwelling zones are considerably less slab-
like. The dissolution of these structures at 1550 km depth was very pronounced
in Fig. 5(d), but is less so in the counterpart plot without second low-viscosity
layer beneath the transition zone. The explanation seems to be that long
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Fig. 14. An alternative basic radial viscosity profile, η2(r), for rn = 0.

wavelength downwelling structures can penetrate deeper into the viscosity
hill of the lower mantle than short wavelength ones.

5 Discussion and conclusions

We begin with some remarks on our starting radial viscosity profile. In spite
of the runs we performed in connection with Sections 4.2., 4.3. and 4.4., it is
our opinion that a viscosity profile with two minima in the upper half of the
mantle is realistic based on solid-state physics and PREM (Cf. Fig.1). We
shall review briefly some relevant papers that provide hints in this direction
but have been obtained using other methods. Spada et al. (1992) investigated
effects on post-glacial rebound from a high-viscosity transition layer. They
found that a hard layer between 410 and 660 km depth diminishes ones
ability to fit polar wander data with a small viscosity increase across the lower
mantle. Therefore, a prominent maximum in viscosity in the lower mantle (Cf.
Fig.1) appears necessary not only because the melting temperature increases
with increasing pressure (and thereby represents an estimate of the activation
enthalpy) but also for purely geophysical reasons. The seismic activity along
the passive margins of Fennoscandia requires a remarkable viscosity increase
below the asthenosphere, most likely in the transition layer. Č́ıžková et al.
(1996) and Kido and Čadek (1997) also argued for the existence of a high
viscosity transition layer and of two low viscosity layers, one above and one
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Fig. 15. For η2(r), the time dependence of the following quantities is shown: laterally
averaged surface heat flow, qob, the reciprocal value, Ror, of the Urey number, the
Rayleigh number, Ra, and the Nusselt number, Nu.

below of it. They started from a distribution of the seismic velocities by Li
and Romanowicz (1996), transformed the seismic velocities into densities, and
used a genetic algorithmic inversion that excluded those parts of the mantle
where the density differences have predominantly compositional causes. Using
intermediate-wavelength geoid inversions, Kido and Yuen (2000) studied
the viscosity profile of the mid-mantle in detail. They found it to be of no
major consequence whether they introduced an impermeable boundary at
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Fig. 16. For η2(r), temperature (color) and the creeping velocity (arrows) is dis-
played on an equal-area projection of a spherical surface in 134.8 km depth for the
present time.

660, 700, 750, or even 1000 km depth or whether there was no impermeable
boundary. In all cases they obtained similar viscosity profiles, namely, a high
viscosity lithosphere, followed by a low viscosity asthenosphere, followed by a
high-viscosity transition layer, followed by a second low viscosity layer in the
uppermost part of the lower mantle. Their curves are similar to the upper
half of Fig.1. They did not show the profile for the lower half of the mantle
because of low resolution. Forte (2000) derived a set of viscosity profiles
through a formal inversion procedure. His profiles produce a best fit to the
observed free-air anomalies and to the observed motions of the lithospheric
plates where his starting point was a pair of seismic tomography models.
When an impermeable boundary is assumed at 670 km depth, the resulting
viscosity-depth curve is similar to our Fig.1. Whithout this impermeable
boundary the viscosity peak, corresponding to the transition layer, is shifted
down by 240 km. As a final remark on the starting profile, the observed peak
in deep-focus seismicity at transition zone depths (Kirby et al., 1996), and
the non-occurence of earthquakes deeper than 700 km, despite tomographic
evidence for slab penetration into the lower mantle, supports our inference of
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a high-viscosity transition layer with low-viscosity layer immediately below
it. However, in the course of the work we gained a certain independence of
the starting viscosity profile by variation of the parameters.
The present paper describes a set of numerical experiments with an infinite
Prandtl number fluid in a compressible spherical shell heated mainly from
within. We used the anelastic liquid approximation with Earth-like material
parameters. The Birch-Murnaghan EoS was employed to derive the Grüneisen
parameter, isothermal bulk modulus and its pressure derivative as a function
of depth from observational values provided by PREM. We computed the
melting temperature as a function of depth using the Grüneisen parameter,
Lindemann’s law and some solid-state physics considerations. Since the
melting temperature can be regarded as a proxy for activation enthalpy, we
use it to estimate the radial viscosity variation. We calibrated this relative
profile by the value of the asthenospheric viscosity that matches post-glacial
rebound observations. In addition, we include the lateral dependence of
viscosity on temperature such that the viscosity depends on the radius, the
colatitude, the longitude, and the time.
A lot of other models reduce the variability of the viscosity to the temperature
dependence. In the corresponding convection models, the boundary layers
at the upper surface and at the CMB control the mechanism (Cf. Section
2.) and the bulk of the mantle is isoviscous. Since none of the three possible
convection regimes shows plate-like velocities near the surface, some groups
introduced other constitutive equations that differ from the Newtonian fluid.
New rheologies have been used in order to reproduce lithospheric strain
localization and weakening. E.g., Tackley (2000a) investigated the influence
of viscoplastic yield stress where a part of it depended on depth. Tackley
(2000b) studied the effect of increasing strain weakening. Richards et al.
(2001) found that the generation of plates is facilitated by plastic yield stress
and a low-viscosity asthenosphere beneath the lithosphere. Bercovici et al.
(2001b,c,2002) and Ricard et al. (2001) examined a two-phase mixture to
achieve a continuum description of weakening and shear localization and to
explain the plate boundary formation. Continuing the work of Trompert and
Hansen (1998), the Hansen group is working on the problem of the formation
of oceanic lithosphere and subduction slabs, too. It is fully legitimate that
this main problem attracts so much attention and efforts.
However, the focus of the present paper is the influence of the physical
material properties, especially of the viscosity, inside the mantle on the
thermal evolution, hence preferably on the development of convection during
a long time interval. Karato (1997a) concluded that in the typical mantle,
where temperature is moderately high and stress is relatively low, the
dominant creeping mechanism is either diffusion creep or power law. We
suppose that a Newtonian fluid is an acceptable approximation for the main
part of the mantle since the prevailing gradients of the creeping velocity are
probably sufficiently small in the lower mantle and in the transition zone.
First we report briefly on the less important point: We found by variation of
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the parameters that the influence of γ, α, cν and cp is small compared with
the viscosity effect. This statement applies for constant values of γ, α, cν and
cp as well as for the radial profiles of these quantities that have been derived
from physics and geophysics.
It is however most important that, for the reasons a) and b) of Section 2.,
the viscosity profile is stronger dependent on the radius than often assumed.
Our preferred viscosity profile displays not only a high-viscosity lithosphere
and a viscosity hill in the lower portion of the lower mantle but, also a
prominent high-viscosity transition layer inferred to arise from a high garnet
content. Moreover, there is not only the usual asthenosphere but also a second
low-viscosity zone just below the 660-km phase boundary. We note that our
preferred viscosity profile bears a similarity to the successful viscosity profile
LVZ of Cserepes et al. (2000, p. 139) and to the profile VL of Forte (2000)
that is based on mantle flow calculations in which the density contrasts
were estimated from long-wavelength seismic heterogeneity assuming density
differences are caused exclusively by temperature differences. The computed
flows were constrained to match observed free-air gravity anomalies and
observed tectonic plate motions.
Systematic variation of the viscosity-level parameter, rn, shows the fol-
lowing result within wide boundaries (−0.5 ≤ rn ≤ +0.3): The existence
of two low-viscosity layers inside the mantle causes networks of very thin
tabular-shaped downwellings. These sheets are considerably thinner than
other downwellings of known Newtonian-fluid models. The quantity rn can
be transformed into the Rayleigh number using Fig.6 or, more exactly, Eq.
(5). The plate-like downwelling sheets are thin down to about 1350 km depth.
Hence, they are able to penetrate the high-viscosity transition layer. The
sheets begin to assume the form of large drop shaped features at a depth
of about 1550 km. Of course, our solutions have no plates at the surface.
A natural way to get plates would probably be to take into account the
different oceanic-lithospheric layers with different constitutive equations,
from top to bottom brittle, semi-brittle and viscoplastic (Kohlstedt et al.,
1995). But the incorporation of this stratification in a flow model is a problem
of node distance. Furthermore, the incorporation of water in the oceanic
crust seems to be an important cause for the possibility of subduction:
Terrestrial planets without oceans don’t have plate tectonics. Another
important effect is the dehydration of the harzburgite that occurs during
partial melting. This is likely to increase the slab viscosity by 2-3 orders of
magnitude (Braun et al., 2000). All these effects are not included in our model.

We found extremely well developed thin sheet-like downwellings are in the
surrounding of rn = − 0.1. This corresponds to the Ror value by Stacey and
Stacey (1999). For the interval −0.5 ≤ rn ≤ +0.7, Ror varies only slightly as
a function of time during the last 2000 Ma. An interesting result is the nearly
time-independent Nusselt number for −0.3 ≤ rn ≤ +0.1 and the last 4000 Ma
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of evolution. All the mentioned major trends in our results are robust at least
for −0.3 ≤ rn ≤ +0.1.
The transformation of the sheet-like downwellings into broader drop-like struc-
tures can be demonstrated by a comparison between Figs. 5 (c) and 5 (d).
The depth of this transformation increases with growing rn. The mentioned
transformation can be observed also in the real mantle: Seismic tomographic
models change their statistical character between 1400 and 1900 km depth.
P-wave and S-wave velocity deviations are decorrelated in the deep mantle
(van der Hilst and Kárason, 1999; Davaille, 1999). Most subducting slabs do
not extend deeper than 1700 km (van der Hilst et al., 1997). This is well
compatible with a high-viscosity lower part of the lower mantle.
The more the Rayleigh number has been augmented and the nearer the ap-
proach is therefore to Earth-like Rayleigh numbers the more sheet-like are
the downwellings of our model. For reasons of solid-state physics, we think
that steeper viscosity gradients near 410, 520 and 660 km depth are unavoid-
able for the real Earth. For numerical reasons, however, we have been forced
to diminish these viscosity gradients. Our numerical experiments show: The
steeper these gradients are the less vertical mass flow can be observed at the
corresponding depth. Therefore we anticipate that the real transition layer is
a kind of barriere for mantle convection but a permeable one. However, for
the present viscosity profile we obtained whole-mantle convection that is slug-
gish in the lower part of the lower mantle. The large radial variations of the
viscosity proved to be very important for the horizontal length scales of the
flow patterns. They were more relevant than the temperature dependence of
the viscosity. The latter result corresponds with that of Ratcliff et al. (1997).
Howard (1966), Parsons and McKenzie (1978) and Kenyon and Turcotte
(1983) performed a simple boundary stability analysis for an incompress-
ible viscous fluid in a horizontal layer with constant material parameters,
with prescribed boundary temperatures, without internal heating and free-
slip boundary conditions. The heat loss at the surface is conductive. Non-zero
thermal gradients exist only in the boundary layers. The boundary layers will
gradually thicken and break away if enough buoyancy is collected. For this
problem

Nu = 0.112Ra0.333 (47)

has been deduced. It is surprising that our non-steady compressible-shell evo-
lution model with depth- and temperature-dependent viscosity and mainly in-
ternal, temporally decreasing heating has led to the result that the numerical
experiments can be summarized by Eq. (46) and Fig.9. Stagnant-lid convec-
tion regimes established other Nu– Ra parameterizations which could be fit
for Mars and Moon. For Earth, however, Eq. (46) or related equations seem
to be appropriate. This can be taken as a confirmation of the Nu – Ra pa-
rameterization for the Earth’s evolution of Schubert et al. (1979, 1980, 2001).
The other results on non-dimensional numbers are to be found in Section 4.3.
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