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Thermal Regime of the Earth's Outer Core 

By W. ULLMANN 1) and U. WALZER 1) 

Summary - First an introduction into the dynamo problem and the core paradox is given. A novel 
theory of the volume dependence of Griineisen's parameter is used for calculating the adiabatic temperatures 
on the assumption that the melting temperature of the material is reached at the boundary between the inner 
and outer cores of the Earth (IOB). On this condition, thermal convection throughout the outer core is 
impossible according to the melting-point curves of KENNEDY and HmGlNS (1973) and LIu (1975), whereas 
it is permitted by that of LEPPALUOTO (1972), Boscru (1975), and S'rACEV (1977). Various possibilities of 
solving the core paradox are described. 

Zusammenfassung-Zun~chst geben wir eine Einffihrung in das Dynamo-Problem und das 
Kernparadoxon. Mit einer neuen Theorie der Volumenabh/ingigkeit des Griineisen-Parameters werden 
unter der Voraussetzung, dab an der Grenze zwischen innerem und /iuBerem Erdkern (lOB) die 
Schmelztemperatur des Materials erreicht ist, die adiabatischen Temperaturen berechnet. Fiir die 
Schmelzpunkt-Kurven von KENNEDY und HIGGINS (1973) und LIU (1975) ist unter dieser Voraussetzung 
thermische Konvektion im gesamten/iul3eren Kern unm6glich, fiir die von LEPPALUOTO (1972), BOSCH1 
(1975) und STACEY (1977) erlaubt. Verschiedenartige M6glichkeiten, das Kernparadoxon zu 16sen, werden 
beschrieben. 

Key words: Thermal convection; Outer core; Gr/ineisen's parameter. 

1. Introduction: The dynamo problem 

At present, the generation of the geomagnetic main field is chiefly explained by a 
dynamo mechanism. There are a number of ingenious and, in part, rather complicated 
theories (see, for instance, KRAUSE and R)~OLER, 1971 ;  SCHMUTZER, 1974/75). 
Coml~rehensive surveys were given by ROBERTS (1971), GUBBINS (1974), MOFFATT 
(1976), and STIX (1977). It is now evident that there is an essential relationship between 
the angular velocity of the planets and the planetary magnetic field, as the Alfv6n-to- 
angular-velocity ratio for Mercury, Venus, Earth, Jupiter, and Saturn is of one and the 
same order of magnitude (BussE, 1976; STtx, 1977). This observation serves as a basis, 
for instance, for a theory of BvssE (1975) in which the dominant effect of rotation is 
expressed by the fact that the Lorentz force is small as compared with the Coriolis 
force, and the full hydromagnetic problem for a cylindrical configuration is solved. 

~) Zentralinstitut fiir Physik der Erde, Institutsteil Jena, 69 Jena, Burgweg 11, DDR; Mitt. d. ZIPE 
Nr. 682. 
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As is well known, each dynamo must satisfy two fundamental theorems: 

(1) COWLING'S (1933) theorem: the magnetic field generated by the dynamo must 
be neither axisymmetric nor two-dimensional (LoRl-z, 1968). 

(2) ELSASSER'S (1946) theorem: mass flow connected with the dynamo must not 
be purely toroidal, i.e., the radial component of the velocity field must not 
vanish. 

At a first approximation, planetary magnetic fields are axisymmetric. This, initially, led 
to the conclusion that dynamos cannot be the source of the terrestrial magnetic field. 
Now it is known that minor deviations from axial symmetry render dynamos possible 
(BRAGINSKII, 1964). LORTZ (1972) proved that there are stationary dynamos which are 
exactly axisymmetric outside the conductor. From this it follows that, even if the 
magnetic field on the surface of Earth is completely axisymmetric, a dynamo might well 
be the source of it. The second theorem leads us directly to the main problem of this 
paper: to obtain a stationary radial velocity component of flows within the outer core, 
thermal convection is usually assumed to exist there. HIGGINS and KENNEDY (1971), 
however, claimed that the liquid outer core is stably stratified and thermal convection, 
therefore, should be impossible. This claim is based on an extrapolation of the melting- 
point curve of KRAUT and KENYEDY (1966) which shows a smaller gradient with depth 
than the curve of adiabatic temperature. If we assume that the outer and inner cores are 
of the same chemical composition, and that the temperature at the boundary between 
the liquid outer core and the solid inner core corresponds to the melting point of the 
material at the pressure existing there, it follows that the adiabatic temperature 
required for thermal convection in the outer core is below the melting temperature, 
demanding that the outer core be solid, instead of liquid, as observed. This core 
paradox has been discussed and criticized by various authors and is no longer regarded 
as a serious problem (for the more relevant melting-point curves). However, it 
stimulated more careful studies of the thermal regime of the core. In this paper we 
present a new theory of adiabatic temperature, different versions of the pressure 
dependence of the melting temperature of iron, and other things to contribute to the 
elucidation of these fundamental questions. 

Another way to drive the dynamo is gravitational differentiation of the outer core 
matter (LOPER and ROBERTS, 1978; H~GE and M~LLER, 1979). These interesting 
approaches are not discussed in this paper. 

2. Origin and parameterization of basic relations 

2.1. Some basic aspects 

For our purpose a spherically symmetric model of the Earth's outer core, as 
presented by DZIEWONSKI, HALES and LAPWOOD (1975), is adequate. We consider a 
homogeneous thermodynamic system with definite boundaries, that is, a phase which 



Vol. 119, 1980/81 Thermal Regime of the Earth's Outer Core 61 

may contain more than one component,  as is most probably the case in the outer core. 
Moreover, the system is in stable equilibrium, and it has two degrees of freedom. Thus 

the state of the system is uniquely determined by two independent thermodynamic 
variables. 

We suppose a portion of the outer core at any depth z to be represented by such a 
system. As z can be chosen arbitrarily we consider the parameters of state of that 
system, used to describe and correlate local properties of the outer core materials in 
bulk, to be functions of z over the depth interval from 2885.3 km to 5153.9 km. These 
functions are strictly monotonic and continuous, because phase changes are not 
expected anywhere. Hence it follows that the thermodynamic system may undergo a 
series of state changes which are reversible solely, and we can now use general methods 
of equilibrium thermodynamics. 

To form the non-dimensional quantity 

\~}s =- 7, (1) 

temperature Tis regarded as a function of volume Vand entropy S. 7 is often called the 
(thermal) Grfineisen parameter. It is equivalent to the parameter originally defined by 
Grfineisen (logarithmic dependence of a lattice frequency upon volume) only if it is 
independent of temperature, a restriction that is questionable in the case of the Earth's 
outer core, as was pointed out by STACEV (1977) and others. However, 7 as defined by 
(1), is the important quantity for practical purposes. 

The phase of the outer core to which our attention is confined may be considered as 
a two-component system consisting of a nearly close-packed atomic arrangement, 
apparently metallized in spite of being completely dislocated in the fluid state, and an 
electronic fluid (conduction electrons). If the system thus defined is supposed to be like 
a mixture of two perfect, unreacting gases, then the pressure P, entropy S, and 

thermodynamic potentials of the system are all sums of the corresponding quantities 
which either component would have if present alone. 

Hence, in particular, it follows that the total heat capacity at constant volume 
denoted by Cv results from 

~,~2) (2) C v =  C~v 1~ + ~ v  , 

where the heat capacities r  and r~(z) of the same kind refer to the lattice and the ~ V  ~'~V 

electronie fluid, respectively. The Grfineisen parameter (1) may be expressed by 

7mC~ ) + 7~2)C~ ~ 
7 = ~vCm + C~) ' (3) 

where 7 u) and 7 ~2) are the lattice and electron contributions to (1). It is to be noted that, 
although both 7 (1) and 7 ~2) may be taken to be independent of temperature, since ,~vr'm 
and ~vr'~2) are different functions of temperature, 7 is independent of temperature only if 
7( 1 ) _=. 7(2). 
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Thermodynamic relationships lead to 

(O~n T ) v (8 ln Cv'] (t31n Cv'] {c31n Cv ~ 
= \ ~ n  V js = \ ~ n  V fr - 7~ ~ n  T )v (4) 

(see also BRENNAN and STACEY, 1979). From this, considering a high-temperature 
classical situation in which C~ ) suffices to be taken as a constant, independent of 
both T and V, 7 {1) cannot depend upon temperature in the outer core. 

According to the theory of the electronic spectrum of metals which was presented 
for the first time by BLOCH in 1929 (see, e.g., LANDAU and LIFSCHITZ, 1966), the electron 
contribution to the heat capacity Cv, that is, Cry 2} must be written as proportional to 
temperature T. Thus, 

(# In Ctv2)/~ In T)v = 1 (5) 

and taking 7 ~2~ also independent of T, from (4) and (5) it is given by 

7 ~2) = 0 In C~)(V, T)/t3 In V. (6) 

Thus both 7 tl) and 7 t2~ are functions of Vonly. From (6) we see that 7 (2) is determined if 
C(z2)(V, T2) is known and conversely. According to STACEV (1977) we may write 

C~)(V, T2) = C~)(Vo, T2)x 2/3 exp [ -  (37to 2) - 2)(x 1/3 _ _  1)], (7) 

where V o and ),t02~ are the zero-pressure values of V and 7 t2~ (at T = T2), respectively 
(for the high pressure phase), and use is made of the notation x = V/Vo for the 
volumetric contraction (x < 1). Hence, from (6) 

= 2 + _ } I x -  1/3 (81 

The complete determination of 7 t2) thus requires information on the values of V 0 and 
7~02~ from other investigations. Since in the case of 7 u~ a relation of the form (6) is not 
available, additional considerations are required. From the diversity of expressions for 
the Grfineisen parameter derived by many investigators from quite different con- 
siderations we have chosen the VASHCHENKO-ZUBAREV (1963) formulation (see also 
IRVINE and STACEY, 1975; STACEY, 1977), that is, we then write 

1 (~3K) 5 2 P  

7 = (9) 
4 P  

_ _  _ _ _ _  

3K 

where all parameters are total (lattice plus electron)contributions for the material. We 
may also write this equation with the superscript 1 in brackets with each parameter to 
indicate that the respective quantity refers to the lattice in the outer core and x ~1) 
denotes the corresponding adiabatic bulk modulus, x u~ = -  V(t3P~)/t3V)~,,. In this 
case the outer core is supposed to consist of a material in which interatomic forces can 
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be considered central as a good approximation and, strictly speaking, the quantities 
p(1), K(t) and (t~tc(1)/t3P(1))~. must be corresponding zero-temperature extrapolations. 

The value of 7 (1) can be estimated separately if the outer-core estimate by the 
Vashchenko-Zubarev formulation of 7 should include only a slight electron contri- 
bution, so that the correction may not be larger than the uncertainty in that estimate, 
then P, Ks - - V(OP/O V)s and (~Ks/~P)s might be substituted for the corresponding 
quantities in (9). Accordingly, to compute the function yr for several depths 
through formula (9), values of the seismic compressional wave velocity Vp(Z) and 
density p(z) and pressure P may be used from the parametric earth models by 
DZIEWONSKI et al. (1975). Values of ?~l)(z) obtained in this way are listed in Table 2. 

Instead of applying the model data to formula (9), an explicit expression for the 
equation of state P = -(SU/8 V)s, where U is the internal energy, and, being derived 
from it, expressions of Ks and (SKs/OP)s can be useful for estimation of the material 
parameters which appear in these approximation functions. In Subsection 2.4 we shall 
deal with this question. It should be mentioned that, strictly speaking, the two 
procedures for the utilization of formula (9) do not refer in the last analysis to the 
foregoing outer-core phase interpretation as a two-component system. 

As to ~vC~tx) being virtually constant, it suffices to take the lattice specific heat c~ ) to 
be 3R/m, where R ..~ 8.317 [J mo1-1 K - I ]  is the molar gas constant, and m is the 
molar mass for the outer core usually estimated to be 0.05 [kg mol-  1] on an average. 

(1) 1 1]. Hence, c v ~ 499 [J kg-  K -  With this we conclude our discussion of the 
determination of ~ through equation (3), remembering the inconsistent constraint we 
need for the practical use of the approximate relation (9). For a solution of this 
problem reference may be made to SaacEv (1977). The approach preferred by him 
differs, however, in some respects from that which has been indicated here. 

2.2. A semi-empirical law of 7 for the outer core 

The conventional definition of the thermodynamic 7, required for example by the 
identity (1) is 

~Xs V 
~ ' -  Cp' (10) 

where ~ =-- 1/V(d V/~ T)e is the isobaric cubic expansion, and Cp is the heat capacity at 
constant pressure. Since Ce/V= cep, where ce is the specific heat (at constant 
pressure), and x s = v2p in the case of the fluid outer core, equation (10) can be 
rewritten as 7 = (ct/ce) v2, which is more suitable for our purpose. It is obvious that each 
quantity in this formula may be taken as a well behaved function of z. Hence 

~(z) 
7(z) = c ~  [vP(z)]2" (11) 

Using vp(z) according to the outer-core model by DZIEWONSI(I et al. (1975), for 
determination of 7(z) attention must now be confined to the term ct(z)/Cp(Z). 



64 W. Ullmann and U. Walzer PAGEOPH, 

To this end we return to the above two-component system representing the outer- 
core phase. Then, denoting the principal heat capacity by C and C (i) (i = i, 2), 
respectively, it can be shown that the quantity 

C C ") 
V (12) 

where ~(0 is the cubic expansion of the ith component, does not depend upon the 
path of temperature change prescribed by the constraint V = const or, alternatively, 
e = const. 

From the Grfineisen law we know that within the limits of validity of the theorem of 
corresponding states the ratio of the heat capacity and the isobaric cubic expansion of a 
solid is independent of temperature in the classical regime, i.e. at high temperatures. In 
addition to this we remember the theory dealing with an electronic fluid in a metal 
subjected to high temperature through which that ratio, now referring to the electrons, 
proves also to be temperature independent (see LANDAU and LIFSCHITZ, 1966). As a 
result we consider both Cm/a m and C(:)/a (2~ to be independent of outer-core 
temperature. Then from (12) it follows that even C/~ does not depend on Tif, and only 
if, this applies to qJ. 

Let us suppose qJ to be a function of density p solely, at sufficiently high 
temperature T. We write 

(ce) (ce) { ~ 3 c e ' ~ ,  (13) = + + . - - ,  

where ~ is, for instance, the mean density of the outer core, and 

Cp ( O O_ Cp "~ = 0 ,  = 0  . . . .  (14) 
\aT  e Jr, o : ,  ~ ~ T,p = 

may be taken for granted, whichever T is chosen from the temperature range of the 
outer core. But just the constraints (14) remain to be proved. 

As we cannot furnish proof exactly, our attention is now confined to the problem 
of fitting the power series (13) to a set of data from p,  c( and ce estimations for the 
outer core which are assumed to approximately satisfy this expansion of cA~. From 
among such data we prefer those given by STACEV (1977) and, as to p, by DZIEWONSKI 
et al. (1975). They are specified in Table 1. For computational convenience, 
however, equation (13) is rewritten as 

c~(z) 
- A + Bp(z) + . . . ,  (15) 

~(z) 

to determine the constants, A, B . . . . .  by means of the data listed in Table 1. Besides, 
this rearrangement of the power series (13) involves the density range of the outer 
core to be included in the interval of convergence of (15) which is, strictly speaking, 
an additional condition to be satisfied. 



Vol. 119, 1980/81 Thermal Regime of the Earth's Outer Core 65 

Table 1 

Densi ty  p ,pressure  P, velocity v p, cubic expansion et, and  specific heat c e as funct ions o f  depth z in the outer core. 
The suffixes PEM and M1 indicate the reference models presented by DZIEWONSKI et al. (1975) and by 

ULLMANN and PAN'KOV (1976), respectively. The values o f  ct and  c v are adopted f r o m  STACEY (1977) 

z P(P~M) P(gEM) P(M I ) Vp(PEM) /)p(M 1 ) ~ ep 
km gcm 3 Mbar Mbar kms -1 kms -1 10-6K -1 Jkg-~  K - I  

2885.3 9.909 1.3540 1.3540 8.002 8.154 15.7 707 
2971 10.043 1.4445 1.4446 8.150 8.293 14.9 704 
3071 10.195 1.5497 1.5512 8.317 8.450 14.1 700 

3171 10.340 1.6540 1.6565 8.477 8.600 13.6 697 
3271 10.478 1.7572 1.7603 8.630 8.741 12.8 693 
3371 10.611 1.8592 1.8635 8.777 8.877 12.2 690 

3471 10.738 1.9598 1.9650 8.917 9.006 11.7 687 
3571 10.859 2.0587 2.0645 9.050 9.129 11.3 684 
3671 10.974 2.1558 2.1616 9.176 9.246 10.8 682 

3771 11.084 2.2509 2.2568 9.295 9.357 10.5 679 
3871 11.189 2.3439 2.3498 9.408 9.463 10.1 677 
3971 11.288 2.4345 2.4393 9.514 9.562 9.8 675 

4071 11.383 2.5227 2.5271 9.614 9.658 9.6 673 
4171 11.473 2.6084 2.6118 9.706 9.748 9.3 671 
4271 11.558 2.6913 2.6933 9.792 9.833 9.1 670 

4371 11.639 2.7713 2.7722 9.871 9.914 8.9 668 
4471 11.716 2.8484 2.8485 9.944 9.991 8.7 667 
4571 11.789 2.9224 2.9219 10.009 10.063 8.5 665 

4671 11.857 2.9933 2.9912 10.068 10.131 8.4 664 
4771 11.922 3.0609 3.0584 10.120 10.195 8.3 663 
4871 11.984 3.1252 3.1232 10.166 10.257 8.2 662 

4971 12.042 3.1861 3.1845 10.204 10.314 8.1 661 
5071 12.096 3.2436 3.2423 10.236 10.368 8.0 660 
5153.9 12.139 3.2887 3.2887 10.258 10.410 9.7 659 

W e  n o t e  t h a t  t he  p a s s a g e  f r o m  (13) to  (15) c a n  be  a v o i d e d  as  f o l l ows  : T h e  r a t i o  Cp/O~ 
as a f u n c t i o n  o n  t he  d e p t h  i n t e r v a l  o f  t h e  o u t e r  c o r e  is s t a t e d  to  be  r e p r e s e n t e d  b y  a 

TAYLOR e x p a n s i o n ,  s u c h  as  

cp(z) e~(s 
- - -  + a l ( z  - s  + a z ( z  - s  + . . . ,  (16) 

w h e r e  a l ,  a z , .  �9 �9 a re  c o n s t a n t s ,  a n d  s is d e f i n e d  b y  p(s  = P. S ince  t he  f u n c t i o n  p ( z )  is 

o n e - t o - o n e  i t  h a s  a n  inve r se ,  z ( p ) ,  w h i c h ,  we a s s u m e ,  c a n  be  e x p a n d e d  in  a T a y l o r  

series.  T h u s  

z = s  b a (  p - P )  + b z ( P  - f i )  2 + "  " ", (17) 

w h e r e  b l ,  be . . . .  a re  c o n s t a n t s .  F r o m  (16) a n d  (17),  a f t e r  s u i t a b l e  r e a r r a n g e m e n t ,  

e q u a t i o n  (15) ar ises .  
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In fitting by the power series (15) it is conspicuous that the data give rise to points 
(p, ce/ct),  located by a Cartesian coordinate system, which are on a straight line as a 
good approximation. Hence, empirically, (15) is reduced to 

c~(z) 
- A + B p ( z ) .  (18) 

~(z) 

By curve fitting, using linear regression techniques, the constants A and B are 
determined to be 

A ~ -129.8750 [km 2 s - : ] ,  B ~ 17.5892, (19) 

presupposing that p is measured in g cm-3,  the correlation coefficient expressed by 
r ~ 0.9995 being satisfactorily close to 1. 

Table 2 

Approximations of the Griineisen parameter ~ as a function of depth z in the outer core, obtained 
from: [col. 1] Vashchenko-Zubarev formulation (9) by using PEM (DZlEWONSKI et al., 1975); 
[col 2] Vashchenko-Zubarev formulation (39) by using M 1 (ULLMANN and PAN'KOV, 1976); 
[col 3] STACEY (1977); [col. 4] semi-empirical law (20); [col. 5] power law (21), with (22) 

z ~,(z) 

kin 1 2 3 4 5 

2885.3 1.344 1.419 1.442 1.422 
2971 1.341 1.408 1.420 1.411 
3071 1.338 1.397 1.399 1.399 

3171 1.336 1.386 1.382 1.387 
3271 1.512 1.334 1.375 1.368 1.377 
3371 1.510 1.332 1.366 1.357 1.367 

3471 1.505 1.330 1.357 1.348 1.358 
3571 1.497 1.328 1.348 1.340 1.349 
3671 1.486 1.326 1.340 1.333 1.341 

3771 1.470 1.324 1.332 1.328 1.333 
3871 1.451 1.323 1.325 1.323 1.326 
3971 1.427 1.322 1.319 1.318 1.319 

4071 1.398 1.320 1.312 1.314 1.313 
4171 1.362 1.319 1.307 1.310 1.307 
4271 1.319 1.318 1.300 1.306 1.301 

4371 1.267 1.317 1.296 1.302 1.296 
4471 1.206 1.316 1.290 1.298 1.291 
4571 1.135 1.315 1.286 1.293 1.287 

4671 1.050 1.314 1.282 1.288 1.282 
4771 0.952 1.314 1.278 1.283 1.278 
4871 0.837 1.313 1.274 1.277 1.275 

4971 0.703 1.312 1.270 1.271 1.271 
5071 0.547 1.312 1.267 1.264 1.268 
5153.9 0.400 1.311 1.265 1.258 1.265 
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Making use of (18) and (19) we are now able to write (11) in the form 

~(z) ~ [vP(z)]2 
17.5892p(Z) - 129.8750' 

(20) 

taking care that Vp must be measured in km s-  1 and p in g cm -  3. As mentioned above, 
the functions vp(z) and p(z) can be drawn from the model by DZIEWONSKI et al. (1975). 
Estimates of V(z) thus obtained are given in Table 2, column 4. It should be noted, 
however, that these values are not really independent of Sa-ACEY'S (1977) values given in 
column 3, because Stacey's values of ~ and Cp were used. 

In the next subsection the power law 

7 = mp" (21) 

is preferred to the approximation (21) for computational convenience. The constants, 
m and n, are determined by means of the values given in Table 2 which are presumed to 
approximately satisfy this type of equation. Since fitting by (21) is reduced to the 
problem of  fitting by the linear equation In 7 = In m + n In p to values o fp  and 7, again 
linear regression techniques can be applied which yield 

m ~ 5.2999, n ~ -0.5738,  (22) 

provided that p is measured in g cm-  3. In this case the correlation coefficient becomes 
r ~ - 0 . 9 8 9 0 .  We emphasize that (21) with (22) is nevertheless up to standard in 

estimating the (adiabatic) temperature distribution in the outer core. Values of 
obtained from (21) and (22) are given in Table 2. We observe that 7(z) estimated by 
STACEV (1977) runs much closer to V(z) obtained from (21) and (22) than to 7(z) from 
(20). However, the differences are, in any case, less than the uncertainties. 

2.3. A simple temperature approximatin 9 function for the outer core 

Preferring the density to the volume in (1) and integrating with respect to density 
from p* to p, we get 

f ~ ~(p', s~  
T(p, S) = T(p*, S) exp . P' dp', (23) 

where p* as a limit of  integration shall suitably be chosen. This formula can be used to 
estimate the adiabatic temperature distribution in the outer core, since ~ depends only 
upon P and not T and is given by the tabulated 7(z) without the need to consider 
entropy. Using the power law (21) in (23), we obtain 

~(z) - 7(z*)  
Taa(Z) ~ Tad(Z* ) exp , (24) 

n 

where 7(z) and n are determined by using (21) and (22). 
The approaches (20) and (21) are applicable also to the estimation of the melting 
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point TM as a function of depth z on the outer core. To this end we introduce the 
Lindemann melting law in the differential form 

1 dTM 2 
(7 - �89 (25) 

T M dP KM 

which proves to be suitable for materials with central atomic forces in which melting 
involves no gross changes in coordination (see STACEY and IRVINE, 1977a, 1977b, and 
WALZEg, 1980). By KM the bulk modulus along the melting curve is denoted. 
Eliminating K~ by substituting dP = rCM(dp/p) into (25) which is equivalent to 
neglecting the difference between Ks and ~:M, we obtain 

drM(z) dp(z) (26) 
T~z~-) = 217(z) - 1] p(z) " 

Integrating and taking the antilogarithm 

. , ~ , [ P ( Z * ) ~  2/3 [ ; 7(Z') NP(Z') ] 
T ~ z ) =  T~(~ ) [ p ~ - j  exp 2 ,p~7~ dz ~ dz' . (27) 

For further development of this formula the approximations (20) and (21) are 
available. As a result, from (27), performing the integration by using the power law 
(21), we have 

T ~ z )  ,.~ TM(Z*)FP(Z*)] 2/a [p(z)]" -- [p(z*)]" (28) 
L p ~ - ]  exp �89 , 

where the values ofm and n are taken from (22). We remember that p(z) has been given 
in analytical form by DZIEWONSKI et al. (1975). It should be noted that (28) is equivalent 
to the approximation of Tta(z) presented by Sa'ACEV (1977), except that the constants 
corresponding to m and n, as given in (22), are somewhat different. Incidentally, the 
combination of (23) and (27) gives rise to the relation 

T z * [  7 [  2 p(z*) 2/3 
TM(z) "~ 'M( (29) 

For the reference level z*, the inner core boundary is used, because it is assumed that 
the adiabatic temperature there coincides with the melting point, i.e. Tad(Z* ) = TM(z*). 

2.4. Application of  the internal energy approach 

From ULLMANN and PAN'KOV (1976) we take the function 

X(x, S)  =- 9Ko(2 - ~1)- 2(x (2/3)-(1/3)~1 - 1) 2 (30) 

multiplied by V o to approximate the internal energy U of highly compressed matter 
such as in the Earth's deep interior. The material parameters Ko and K1 > 2, depending 
on S, are the zero-pressure values of Ks = k(P, S)  and (OKs/c~P)s, respectively. Thus, 
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applying (30) to the outer core and again assuming entropy changes in this region to be 
insignificant, we have (with average entropy S) 

dX(x, ,S) d2X(x' S) (31) 
U ~ VoX(x, S), P ~ dx ' KS ~ X dx 2 

and 

(OKs  d d2x( , 
de ,Is ~ - 1 - d ln~  In ~ x  2 (32) 

This system of approximate equations is henceforth called model 1, abbreviated M 1. 
Now it is understood that K 0 and ~q are given by 

and 

d 2 
Ko = k(0, g) X(1, g) (33) 

d 2 
d k d In S). (34) KI= T (0,  x2x(1, 

Particularly, as to P ~ -dX(x,  S)/dx, we only indicate that for convenient values of K1 
this relationship fits into the most important approximations from among those of the 
equation of  state which are customarily said to be of the Gilvarry type (see, e.g., 
ANbLRSON, 1967). The choice of the parameter K 1 = 4 leads to the standard form of 
Birch's equation ; if ~c I = 3 we obtain the abridged Bardeen equation. In general the 
equation coincides with a Born-Mie equation having indices in the ratio 2:1. 
For more details: see U LLMANN and PAN'KOV (1976). We have fitted M1 to the outer- 

core values of p, vp = x/~s/P and P from the parametric Earth model (PEM) presented 
by DZIEWONSKI el al. (1975) to find the parameters 

Po ~ 6.7099 [g cm-3], K o -~ 1.4226 [Mbar],  K 1 ~ 4.5550, (35) 

recalling that these values are referred to outer-core conditions. In Table 1, values of P 
and Vl, which arise from M1 by using (35) are compared with those ofPEM.  We observe 
that the corresponding values both of P and of Vp at each depth z are, on the whole, in 
quite good agreement. 

Let us now use M1 to determine y through the Vashchenko-Zubarev formula (9) 
with the relationships (31) and (32) 

I~x d dX(x,S) 1 d 1 d2X(x ,"  ) ~] 
7 ~  ~x In ~ - d ~ x  + ~ d--i~n x n ~ + 

[ 4  d dX(x, ' )  ] -1 
x ~xx~xln ~ x x  - 1 (36) 

Expanding the function X(x, ,_q) according to (30), this becomes 

~ �89 -- 1) + ~-(~q -- 2)(K1 -- 3)[(2K 1 -- 5)X (2/3)-(1/3)~' -- Xl + 3]-1.  (37) 
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In Table 2, values of ? calculated by using (37), (35) and p = p(z) from PEM are 
itemized. 

Introducing (37) into (23) and performing integration, we obtain 

r(p(z); Po, ~q) 
Tad(Z ) ~ T~a(Z*) z(p*; Po, rq) ' (38) 

where 

x _ l / 3 l r l  - x,[2h'a ~ _5 tq - 3 11/2 
"c(p  , P0, K1) - x (v3)(~'-2) (39) 

[ ~:1 - 2 •1 2 _J 

x = Po/P. Further, equation (33) becomes, on using (42), 

TM(z ) ,~ T (z*) Fv(p(z)ip~ tq)-~2[ P* ~213 (40) 
" L po, J L p ( z ) ]  " 

As before z* and p* are referred to the inner-core boundary, that is, by PEM, 
z* = 5153.9 kin, p* = 12.139 g cm -3. 

The application of the internal energy U of the outer-core material at any depth z, 
approximated by VoX(x, S*) with the parameters (35), to derive an approximate 
function for the temperature Taa(Z) through the Vashchenko-Zubarev formulation of 
7, against which physically well-founded objections have been raised, serves to test the 
fitness of that formulation for a thermal model of the outer core. Since we believe that 
(24) will help us to obtain reliable information, we therefore make a comparison 
between (38) and (24). In doing so, attention is confined to the expressions 
z(p(z); Po, ~q)/z(p*; Po, K1) and exp [7(z)/n - ~(z*)/n] with the function ?(z) after (21) 
and (22). The result can be seen in Table 3. 

We realize that these two expressions differ from one another only slightly over the 
whole depth range. The maximum divergence occurs at the core-mantle boundary, the 
percentage deviation being about 0.3~o. From this we come to the conclusion that 
formula (38) is adequate for our purpose, too. That implies that the Vashchenko- 
Zubarev approximation of ? in the form (36) in spite of a certain physical insufficiency, 
is a suitable basis for a thermal model of the outer core as well as the formulas (21) and 
(20), which bear comparison with the expression for ?(z) found by STACEY (1977) as 
shown in Table 2. 

We emphasize that M1 is used as a catalyst only; it merely represents the PEM 
parameters by continuous analytical functions to a good approximation. This 
facilitates study of the physico-chemical interpretation of the parameters in (35), which 
is the subject of a separate paper. 

3. Elimination of the core paradox 

From the preceding section it can be seen that we, unlike HIooINS and KENNEDY 
(1971) consider ~ to be a function of V. As shown in Table 2, it results in a slight 
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Table 3 

Comparison between the temperature distribution 
functions 

�9 (p(z); Po, ~ )  
u(z, z*)  = 

T(p(z*); Po, ~ct) 
and 

[p(z)]" - [p(z*)]" 
v(z, z*) ~ exp 

m-in 
(see text) with a view to estimatin9 the fitness o f  the 
Vashchenko-Zubarev formulation o f  the Griineisen 
parameter for a thermal model of  the outer core 

Depth 
km u(z, z*) v(z, z*) 

2885.3 0.7639 0.7615 
2971 0.7779 0.7762 
3071 0.7936 0.7927 

3171 0.8087 0.8085 
3271 0.8233 0.8235 
3371 0.8372 0.8378 

3471 0.8505 0.8515 
3571 0.8633 0.8645 
3671 0.8754 0.8768 

3771 0.8871 0.8886 
3871 0.8982 0.8998 
3971 0.9088 0.9104 

4071 0.9189 0.9205 
4171 0.9285 0.9300 
4271 0.9376 0.9390 

4371 0.9463 0.9476 
4471 0.9545 0.9557 
4571 0.9623 0.9633 

4671 0.9696 0.9706 
4771 0.9766 0.9773 
4871 0.9832 0.9838 

4971 0.9895 0.9898 
5071 0.9954 0.9955 
5153.9 1 1 

71 

decrease of  ~; with rising pressure. In contrast to this, CHAN, SPETZLER, and MEYER 
(1976), experimentally detected that, in the case o f  the liquid metals mercury and 
bismuth, 7 slightly increases with increasing pressure. BOEHLER and KENNEDY (1977) 

obta ined  the same result for 7 of  liquid mercury. However,  we do not believe these 
results to be of  importance for the Earth's outer core: First, the pressures used in 
experiments are too  small to obtain so close a packing as in the core, and, second, Bi 
and Hg show anomalous properties. Our theory does not apply to pressures as low as 
these. It does apply, however, to those in the lower mantle and the core. Let us now turn 
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to the core paradox referred to in Section 1 by using our theory developed in Section 2. 
KENNEDY and HICGINS (1973) themselves offered a solution to that contradiction. They 
observed that in their investigation of 1971, a layer of about 200 to 300 km thickness at 
the bottom of the core was overlooked where the adiabatic temperatures for different 
constant y-values are just above the melting temperature. We calculated anew the 
adiabatic temperature according to our method and found the gradient of adiabatic 
temperature in the outer core everywhere to be greater than the gradient of melting 
temperature according to KENNEDY and HIGCINS (1973). From this it follows either 
that thermal convection cannot exist anywhere in the outer core (see Fig. 1), or that the 
interpretation of IOB as the melting point of a material which is chemically uniform 

both inside and outside, is incorrect. Convection in a layer of 200 to 300 km at the 
bottom of the outer core can be excluded in any case. 
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Figure 1 
Renewed core paradox for the melting-point curve of iron by KENNEDY and HIGGINS (1973) [ = dotted line] 
in connection with our curve of adiabatic temperature [ = full line]. The curves of the adiabatic temperature 

for constant values of 7 according to KENNEDY and HIGGINS (1973) are drawn in dashed lines. 
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If one considers the linear melting point-pressure relation of KRAUT and KENNEDY 
(1966) to be the most realistic one, as did CHAN et al. (1976), p. 275, although it is not 
theoretically founded to a sufficient degree, then there is a possibility to circumvent the 
paradox. The chemical composition of the inner core differs from that of the outer core 
in that the melting temperature at IOB shows a jump. Melting temperature is 
significantly higher inside than outside so that an adiabatic temperature curve which is 
identical with the actual one, lies below the melting temperature curve in the inner core, 
and above the melting temperature curve in the outer core. Nevertheless, the adiabatic 
temperature gradient in the outer core may exceed the melting temperature gradient. 
This realistic suggestion originates in STACEY (1972) (although no longer favoured by 
him). He specialized it in so far as he assumed pure iron or iron and nickel for the inner 
core and, as did MURTHY and HALL (1970), LEWIS (1971) and GOETTEL (1972), iron, FeS 
and small quantities of K 4~ for the outer core, i.e. sufficient K 4~ to generate 10 a3 W. 
From this it follows that 30~o of the heat flux measured on the Earth's surface, 
originate in the core, and that the geodynamo is driven by thermal convection. This 
would mean that the lower mantle is heated not only from inside but also from below. 

Internal heating of the lower mantle is weak. However, due to the exponential 
decrease in viscosity with rising temperature, internal heating causes the Rayleigh 
number of the lower mantle to rise above the critical value from time to time. This leads 
to episodic lower-mantle convection (WALZER, 1974, 1978). In times of intensified 
magmatic activities of the Earth (GAsTIL, 1960), the lower mantle emits more heat than 
is normally the case, and lower-mantle convection disappears owing to this and owing 
to the dependence of viscosity on temperature. 

Supposing that additional heat is generated in the outer core by K 4~ this would be 
stored by the fusing of a thin layer at the bottom of the lower mantle till another period 
of lower-mantle convection begins. STACEY (1972) already remarked that, if the actual 
temperature in the outer core is equal to the adiabatic one, not only heat sources are 
required in or below the outer core, but also heat sinks at CMB. 

It may be stated that this explanation can be realized also when assuming melting- 
point curves other than that of the Kraut-Kennedy type (see VERHOOGEN, 1973). 
STACEY'S suggestion (1972) p. 111, that the inner and outer cores, from a chemical 
point of view, differ considerably is based on a density jump between 1 and 2 g/cm a at 
IOB. Modern Earth models, however, show lower jumps: DZmWONSKI et al. (1975) 
0.565 g/cm 3 and model B1 of JORDAN (1973) 0.17 g/cm 3. A higher accuracy in the 
determination of this density jump could bring about a decision on the correctness of 
Stacey's suggestion since metals during their solidification show but small density 
jumps. 

Criticisms of the mehing-point curve used by KENNEDY and HIGGINS (1973) start 
from different points. Often it is pointed out that their theoretical reasoning was 
incomplete. This is partially true, but it also applies to the derivation of some other 
melting-point curves. GILVARRY (1966) pointed out that the Kraut-Kennedy law is 
consistent with the Lindemann law if y has a particular strong density dependence. A 
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serious objection is that the Kennedy-Higgins curve is an extrapolation of experimen- 
tal melting-point curves for Fe and some other metals from a pressure range between 0 
and 40 kbar to pressures up to 3000 kbar (LEPPALUOTO, 1972 ; VERHOOOEN, 1973). This 
extrapolation which certainly is inadmissibly extensive, was supported by the 
observation that the melting-point temperature relationships for potassium, sodium, 
and rubidium were linear with isothermal volume compressions up to 35%. However, 
these metals show the strong density dependence of y required for compatibility with 
the Lindemann law, which iron does not. 

LEPPALUOTO (1972) stated that usual melting-point theories proceeded from solid 
state physics because the latter is more advanced than the theory of fluids. During 
melting, however, solid and liquid are in equilibrium so that the other side should also 
be considered. Leppaluoto did this, using Eyring's significant structure theory of fluids. 
Equating the Gibbs free energies of liquid and solid, he obtained the melting-point 
curve for iron shown in Fig. 2 which shows that, in conjunction with our adiabatic 
temperature curve, thermal convection would be possible everywhere in the outer core. 
For the lower half of the outer core, the temperature would lie immediately above the 
melting-point temperature. The relevant activation volume, however, cannot be 
determined with certainty, so that the quality of Leppaluoto's curve can only be judged 
with difficulty. 

BOSCHI (1975) investigated close-packed structures on model systems of hard 
spheres. Thus, he calculated the melting temperature of iron by means of a Monte- 
Carlo procedure. Figure 3 shows that his curve (dashed, 2) with our adiabatic 
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temperature curve 2 permits thermal convection throughout the outer core in case that 
lOB is a melting boundary. As shown once more by the curves 1 in Fig. 3, this would be 
forbidden throughout the outer core for Higgins' and Kennedy's melting-point curve 
and our associated adiabatic curve. 

The hitherto mentioned melting temperature curves for iron can be criticized in 
that no phase transitions were considered for them. A suggestion was made, stating 
that the electronic structure of iron which is approximately 3d 7"~ 4s t'~ on the Earth's 
surface, changed towards the state 3d s 4s ~ at lOB, and that the inner core was glassy. 
This would obviate the interpretation of lOB as a liquid-solid transition. A quantum- 
mechanical calculation of the electronic band structure of iron, however, revealed that 
this transition takes place only with a fourfold compression (BuKOWlNSKI, 1976). Thus, 
it will be realistic, for earthly conditions, to restrict oneself to the well-known phases of 
iron. LIu (1975) concluded from the extrapolation of experimental data that the triple 
point of face-centered-cubic (~), hexagonal-close-packed (e) and liquid (1) iron is at 
(0.94 ___ 0.20) Mbar and (2970 + 200)~ The calculation of the e -  1 boundary, 
however, is critical. Figure 4 shows that this boundary approaches to our adiabatic 
curve which we again calculated assuming that lOB corresponds to the liquid-solid 
transition of a material that is uniform inside and outside. This result is comparable 
with JACOBS' (1975) expectation that actual temperatures in the outer core are very close 
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to the melting temperature. In Fig. 4, the full line represents the adiabatic temperature 
taking into account the electronic contribution to the Grfineisen parameter. Because of 
the drawing accuracy, it is unimportant whether the semiempirical law (20) or the power 
law (21) is used for computation of 7. The result shown in Fig. 4 seems remarkable to 
us; for Liu's melting curve the core paradox exists, too. If, however, the Vashchenko- 

Zubarev formulation of 7 and the equation of state M 1 are applied then an adiabatic 
temperature curve arises which runs very close above Liu's melting-point curve 
everywhere. The strength of the evidence favouring the Lindemann melting formula 
(e.g. STACEY and IRVINE, 1977a,b and WALZER, 1980) reinforce the dismissal of the core 
paradox as non-existent. 

4. Conclusion 

The existence of a core paradox depends upon the assumption of a melting curve 
with a lower gradient than is indicated by any sound melting theory. This conclusion is 
not altered by the presence of a light ingredient, FeS (MuV.THV and HALL, 1970), FeO 
(DuBROVSKn and PAN'~ZOV, 1972) or MgO (Ixo, 1976), provided that the melting 
composition is independent of pressure. 
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