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COHESION IN TRANSITION JETALS UNDER HIGH PRESSURES
1)

Uwe Walzer

A bonding theory for transition metals has been derived up to a computing
program. The theory permits good to very good predictions for the total
energy, static pressure, Hugoniot pressure, bulk modulus and its pressure
derivative as a function of the relative volume. A combination of the
pseudopotential theory with the muffin tin orbital theory serves for the
calculation of the cohesive properties of d-state metals. The coupling

of free-electron states and local, nonoverlapping d-states is also taken
into account. The nearly free s-electrons contribute four terms to the
energy: kinetic energy, exchange energy, a Madelung term, and its pseudo-
potential correction. On this basis, two new models are developed. In
both models, it is assumed that the ratio K of nearest-neighbor sepa-
ration to the atomic radius is independent of the pressure p. In the
first model (MB) [15], the additional condition is that a redistribution
of electrons between the two outer shells, which are not completely .
filled, is permissible. In the second model (MC) [14], the requirement

is that for elements with a full d-shell the theoretical bulk modulus at
vanishing pressure is exactly equal to the experimental bulk modulus at
vanishing pressure and that the pressure exactly vanishes for the zero-
pressure volume. In a comparison with various kinds of measured values,
ilC proves to be very successful for all d-state metals except Sc, Ti and
Nb. In both models, the initial pressure derivative B, of the bulk mod-
ulus is not an input parameter, but can be predicted. The theories are
applicable in a unified manner to all transition metals.

Below, only the final results for the two equations of state will be giv-
en. For the calculation of the static pressure p as a function of the
volume £, we have, according to model- B:

p = -c4 %b(aQ’1 + b)2/3 + ¢y % (39'1 + b)5/3 + ¢y ‘-3'1 b(aQ'q + b)ﬂ/3 -
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4 is the Planck gquantum of action, divided by 2n, e is the charge and
n the mass of the electron, « = 1.8 is fixed, r, is the Ashcroft
empty-core radius, Ty is the d-state radius of the free atom, n is the
number of nearest neighbors of an atom. The three parameters a, b and
¢ denote

1
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1
where Zg is the numbér of s-electrons at vanishing pressure, Zg the

volume derivative of the number of s-electrons at vanishing pressure and
Qo the volume at zero-pressure. Higher derivatives were equated to zero.

However, according to model C,

2. o"5/3 _ 1. ~4/3 -2 -8/3 . 8 _11/3
p =5 k@ / - T3 4 kg0 —%bnkq_ﬁ /+30nk59 /3w

with

2
(2.210) ’g—m 22/3 (‘i3ﬁ)2/3

L
"

2
k, = e? [(0.916) Z:/B + azg] (%!)1/3 ’
k3 = Znezrgzg ’
A A 3
_ d 1/2 —_ -4 4r\5/3
k4=Zd("—>\—o)(30-9)n/ 2mK5(3)/ ’
2 .6
4 r
= — 4 (4mry8/3
k5 = Zgn (11.40) - 1-&? (3) (5)

where Z4 is the number of d-electrons, ZS that of the nearly free s-
electrons, If the requirement is that, with equation (4), the pressure
exactly vanishes for Q = 2, and that the theoretical bulk modulus is
in precise agreement with the experimental bulk modulus, you obtain

bn = bm and Ch = Sy If this obvious requirement is made only for
elements with full d-shells, the equation of state for model C is
obtained by using equation (4) with

b= (427 [(52, = 10) by, + 10 = 2] ()
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and

oy = (2™ [(584 - 10) oy + 10 = 3] . (7

The formulas have been derived in [14] and [15]. These papers are devel-
opments based on [11] and [12]). It is to be expected that the new theo-
ries [14] and [15] are better suited than [10, 13] for deriving the pres-
sure dependence of melting temperature. In the following, a comparison
with measured data is to demonstrate the applicability of the theories.
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