µCT monitoring of growth of *S. commune* in artificial pore space

Lena Samhammer, Susanne Lehmann, Thorsten Schäfer

Objective

RENA project: Development of ex-situ bioremediation strategies for radionuclide and heavy metal contamina-

Growth of S. commune and image segmentation

Sample preparation

 Table 2: Composition of nutrient medium

XRM/µCT– Measurement parameter

 Table 3: Measurement settings applied for all shown experiments.

ted soils.

• Related reactive transport models require a comprehensive physico-chemical database

• The growth of fungi within pore space on µm-scale has not been monitored *in-situ* so far

- Fig. 1: Mycoremediation of soil. [1]
- State of the Art µCT/XRM should enable monitoring and quantification of fungual growth processes as well as caused pore space modifications

XRM/µCT

Fig. 6: *S. commune* 12-43 x 4-39 cultivated on Agar plate (left) by Maximilian Herold. Sample inoculated with 1cm x 1cm section from agar plate (right).

Cnemical	m [g]
Glucose	2
Aspartate (Aspartic acid)	0.2
K ₂ HPO ₄	0.2
KH ₂ PO ₄	0.05
MgSO ₄	0.05
Thiaminium dichloride	12 ·10 ⁻⁶

MeasurementObjektiveVoltage
[kV]FilterExposure
time [s]Pixel size
[µm]ProjectionsOverview scan0.4x80LE 4119.51601Fungal growth
monitoring4x80LE 621.81601

XRM/µCT Monitoring of fungual growth

Fig. 7: Monitoring of growth over 3 weeks. Different gray values correspond to density differences. Sample before inoculation of S. commune (0 d). After 7 and 14 days expanding fungal biomass is visible. After 21 days pore space is completly occupied.

Histographic vs. Machiene learning segmentation

Machiene learning segmentation:

- Labeling pixels by interactive "painting" on the dataset to train a classifier, wich can assign the remaining pixels by the intensity, Algoritmus: ExtraTrees
- Error correction by manual postprocessing with morphological operators:

Fig. 2: Internal set up of Zeiss Xradia 620 Versa: X-ray source (left), sample holder (middle) and detector (right).

- XRM: high-resolution non-destructive 3D imaging of internal structures in the sub-micrometer range
- Xradia 620 Versa: a two-stage magnification architecture using high flux beam source technology as well as a high-array detector enable high resolution of fine details. [2]
- Data treatment: Dragonfly 4.1

Proof of concept – Artificial soil consisting of silica beads compared to grain size distribution of real soil material:

Fig. 8: Left: Histographic segmentation of grey values used for two parameter systems (0 d/21d). Middle: Labeled pixels on a slide to feed segmentation trainer for meachine learning. Right: Manuelly corrected meachine learning Segmentation used for three parameter systems (7 d/ 14d).

Biomass quantification

Table 4: Percentages of grains, nutrient mediumand fungus over 21 days fungal growth.

Proportion	0 d	7 d	14 d	21 d
Grains [%]	62.9	64.3	65.3	64.6
Nutrient medium [%]	37.1*	20.0	3.6	-
Fungus [%]	-	15.7	31.1	35.4

*Comparable pore volume to sandy soils (37,0 – 39,5 %).[3]

Grains Nutrient medium Fungus

Fig. 9: Fractions of grains, nutrient medium and fungus over 21 days fungal growth.

Fig. 11: Volume of biomass over 21 days fungal growth.

Fig. 10: 3D visualisation of the positions of grain A (blue) and grain B (purple) within the fungal mass (green) after 7 d of fungal growth. Resolution: 1.8 μ m.

Smoothing, Dilate, Erode and Close

Grain shifts

Fig. 12: Voxel positions of grain B in relation to grain A (coordinate origin) over fungal growth.

Table 5: Relative movement of grain A and B in regard to eachOther.

Grain B		Х	Y	Z
Distance to Grain A before f	ungal growth	353	923	225
	7 d	15	4	5
Relative shift	14 d	20	-2	5
	21 d	-156	-455	-107

Size [mm]	Fraction [%]
0.25 - 0.5	75
0.75 - 1.0	10
1.25 - 1.65	10
1.7 - 2.2	5

Fig. 4: XRM visulisation of artificial silica matrix with water satured pore space. Grains labeld in different colours according to size. Images recorded with 0.4x objective, resolution: 19.5 μ m, image size 3 mm. Small picture up right: silica beads composition.

Fig. 5: Calculated Grain size distribution from XRM images.

Despite the small density difference the growth of *S*.
 commune was monitored and the biomass was quantified via XRM/µCT.

CONCLUSION

- After 21 days the pore space was completely occupied by fungual biomass.
- Increasing grain shifts due to growing biomass according to decreasing open pore space.
- The transferability to real soil materials is assumed to be reasonable.
- Calculation of pore radii distribution
- Adaption on real soil material
- Smaler sample geometries to enable higher mycel resolution
- Application on mapping of transport experiments with Nanoparticels

REFERENCES

[1] https://educalingo.com/de/dic-en/mycelium

[2]https://www.zeiss.de

[3] AG Boden, 1994: Bodenkundliche Katieranleitung,

4. Auflage Schweizerbart, Stuttgart.

Institute for Geosciences · Applied Geology Lehmann.susanne@uni-jena.de https://www.igw.uni-jena.de/angewandte-geologie

Federal Ministry of Education and Research

02 NUK 066B

FRIEDRICH-SCHILLER-UNIVERSITAT JENA